Patents by Inventor William R. Tonti

William R. Tonti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120208338
    Abstract: A method of forming a semiconductor structure, including forming a gate structure on a substrate; performing a first angled implantation on a first side of the gate structure to form a first doped region in the substrate, the first doped region partially extends within a channel of the gate structure and the gate structure blocks the first angled implantation from affecting the substrate on a second side of the gate structure; forming sidewall spacers on sidewalls of the gate; and forming a second doped region in the substrate on the second side of the gate, spaced apart from the channel.
    Type: Application
    Filed: March 22, 2012
    Publication date: August 16, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Roger A. BOOTH, JR., Paul CHANG, Kangguo CHENG, Chengwen PEI, William R. TONTI
  • Patent number: 8242578
    Abstract: Disclosed are embodiments of a circuit and method for electroplating a feature (e.g., a BEOL anti-fuse device) onto a wafer. The embodiments eliminate the use of a seed layer and, thereby, minimize subsequent processing steps (e.g., etching or chemical mechanical polishing (CMP)). Specifically, the embodiments allow for selective electroplating metal or alloy materials onto an exposed portion of a metal layer in a trench on the front side of a substrate. This is accomplished by providing a unique wafer structure that allows a current path to be established from a power supply through a back side contact and in-substrate electrical connector to the metal layer. During electrodeposition, current flow through the current path can be selectively controlled. Additionally, if the electroplated feature is an anti-fuse device, current flow through this current path can also be selectively controlled in order to program the anti-fuse device.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: August 14, 2012
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Toshiharu Furukawa, William R. Tonti
  • Patent number: 8232649
    Abstract: A design structure is provided for interconnect structures containing various capping materials for electrical fuses and other related applications. The structure includes a first interconnect structure having a first interfacial structure and a second interconnect structure adjacent to the first structure. The second interconnect structure has second interfacial structure different from the first interfacial structure.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: July 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Louis L. Hsu, William R. Tonti, Chih-Chao Yang
  • Publication number: 20120187528
    Abstract: A method forms an eFuse structure that has a pair of adjacent semiconducting fins projecting from the planar surface of a substrate (in a direction perpendicular to the planar surface). The fins have planar sidewalls (perpendicular to the planar surface of the substrate) and planar tops (parallel to the planar surface of the substrate). The tops are positioned at distal ends of the fins relative to the substrate. An insulating layer covers the tops and the sidewalls of the fins and covers an intervening substrate portion of the planar surface of the substrate located between the fins. A metal layer covers the insulating layer. A pair of conductive contacts are connected to the metal layer at locations where the metal layer is adjacent the top of the fins.
    Type: Application
    Filed: January 21, 2011
    Publication date: July 26, 2012
    Applicant: International Business Machines Corporation
    Inventors: Kangguo Cheng, Louis C. Hsu, William R. Tonti, Chih-Chao Yang
  • Publication number: 20120178239
    Abstract: A programmable device includes a substrate (10); an insulator (13) on the substrate; an elongated semiconductor material (12) on the insulator, the elongated semiconductor material having first and second ends, and an upper surface S; the first end (12a) is substantially wider than the second end (12b), and a metallic material is disposed on the upper surface; the metallic material being physically migratable along the upper surface responsive to an electrical current I flowable through the semiconductor material and the metallic material.
    Type: Application
    Filed: March 22, 2012
    Publication date: July 12, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: William R. Tonti, Wayne S. Berry, John A. Fifield, William H. Guthrie, Richard S. Kontra
  • Patent number: 8216909
    Abstract: A field effect transistor (FET) that includes a drain formed in a first plane, a source formed in the first plane, a channel formed in the first plane and between the drain and the source and a gate formed in the first plane. The gate is separated from at least a portion of the body by an air gap. The air gap is also in the first plane.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: July 10, 2012
    Assignee: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, Kiran V. Chatty, Robert J. Gauthier, Jr., Jed H. Rankin, William R. Tonti, Yun Shi
  • Publication number: 20120125538
    Abstract: A method for creating an extremely thin semiconductor-on-insulator (ETSOI) layer having a uniform thickness includes: measuring a thickness of a semiconductor-on-insulator (SOI) layer at a plurality of locations; determining a removal thickness at each of the plurality of locations; and implanting ions at the plurality of locations. The implanting is dynamically based on the removal thickness at each of the plurality of locations. The method further includes oxidizing the SOI layer to form an oxide layer, and removing the oxide layer.
    Type: Application
    Filed: January 27, 2012
    Publication date: May 24, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nathaniel C. BERLINER, Kangguo CHENG, Toshiharu FURUKAWA, William R. TONTI, Douglas C. La TULIPE, JR.
  • Publication number: 20120126342
    Abstract: Field effect transistors and method for forming filed effect transistors. The field effect transistors including: a gate dielectric on a channel region in a semiconductor substrate; a gate electrode on the gate dielectric; respective source/drains in the substrate on opposite sides of the channel region; sidewall spacers on opposite sides of the gate electrode proximate to the source/drains; and wherein the sidewall spacers comprise a material having a dielectric constant lower than that of silicon dioxide and capable of absorbing laser radiation.
    Type: Application
    Filed: November 18, 2010
    Publication date: May 24, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Louis Lu-Chen Hsu, William R. Tonti
  • Patent number: 8184465
    Abstract: A programmable device includes a substrate (10); an insulator (13) on the substrate; an elongated semiconductor material (12) on the insulator, the elongated semiconductor material having first and second ends, and an upper surface S; the first end (12a) is substantially wider than the second end (12b), and a metallic material is disposed on the upper surface; the metallic material being physically migratable along the upper surface responsive to an electrical current I flowable through the semiconductor material and the metallic material.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: May 22, 2012
    Assignee: International Business Machines Corporation
    Inventors: William R. Tonti, Wayne S. Berry, John A. Fifield, William H. Guthrie, Richard S. Kontra
  • Publication number: 20120098087
    Abstract: Solutions for forming an extremely thin semiconductor-on-insulator (ETSOI) layer. In one embodiment, a method includes providing a wafer including a plurality of semiconductor-on-insulator (SOI) layer regions separated by at least one shallow trench isolation (STI); amorphizing the plurality of SOI layer regions by implanting the plurality of SOI layer regions with an implant species; and removing a portion of the amorphized SOI layer region to form at least one recess in the amorphized SOI layer region.
    Type: Application
    Filed: January 3, 2012
    Publication date: April 26, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Wagdi W. Abadeer, Lilian Kamal, Kiran V. Chatty, Jason E. Cummings, Toshiharu Furukawa, Robert J. Gauthier, JR., Jed H. Rankin, Robert R. Robison, William R. Tonti
  • Publication number: 20120091556
    Abstract: An apparatus and a method of manufacturing an e-fuse includes a substrate, a patterned gate insulator on the substrate, and a patterned gate conductor on the patterned gate insulator. The patterned gate conductor has sidewalls and a top. A silicide contacts the sidewalls of the patterned gate conductor, the top of the patterned gate conductor, and a region of the substrate adjacent the patterned gate insulator and the patterned gate conductor.
    Type: Application
    Filed: October 14, 2010
    Publication date: April 19, 2012
    Applicant: International Business Machines Corporation
    Inventors: Ephrem G. Gebreselasie, Joseph M. Lukaitis, Robert R. Robison, William R. Tonti, Ping-Chuan Wang
  • Patent number: 8124427
    Abstract: A method for creating an extremely thin semiconductor-on-insulator (ETSOI) layer having a uniform thickness includes: measuring a thickness of a semiconductor-on-insulator (SOI) layer at a plurality of locations; determining a removal thickness at each of the plurality of locations; and implanting ions at the plurality of locations. The implanting is dynamically based on the removal thickness at each of the plurality of locations. The method further includes oxidizing the SOI layer to form an oxide layer, and removing the oxide layer.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: February 28, 2012
    Assignee: International Business Machines Corporation
    Inventors: Nathaniel C. Berliner, Kangguo Cheng, Toshiharu Furukawa, Douglas C. La Tulipe, Jr., William R. Tonti
  • Patent number: 8110483
    Abstract: Solutions for forming an extremely thin semiconductor-on-insulator (ETSOI) layer are disclosed. In one embodiment, a method includes providing a wafer including a plurality of semiconductor-on-insulator (SOI) layer regions separated by at least one shallow trench isolation (STI); amorphizing the plurality of SOI layer regions by implanting the plurality of SOI layer regions with an implant species; and removing a portion of the amorphized SOI layer region to form at least one recess in the amorphized SOI layer region.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: February 7, 2012
    Assignee: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, Lilian Kamal, legal representative, Kiran V. Chatty, Jason E. Cummings, Toshiharu Furukawa, Robert J. Gauthier, Jed H. Rankin, Jr., Robert R. Robison, William R. Tonti
  • Patent number: 8043966
    Abstract: Disclosed are embodiments of a method that both monitors patterning integrity of etched openings (i.e., ensures that lithographically patterned and etched openings are complete) and forms on-chip conductive structures (e.g., contacts, interconnects, fuses, anti-fuses, capacitors, etc.) within such openings. The method embodiments incorporate an electro-deposition process to provide both the means by which pattern integrity of etched openings can be monitored and also the metallization required for the formation of conductive structures within the openings. Specifically, during the electro-deposition process, electron flow is established by applying a current to the back side of the semiconductor wafer, thus, eliminating the need for a seed layer. Electron flow through the wafer and into the electroplating solution is then monitored and used as an indicator of electroplating in the etched openings and, thereby, as an indicator that the openings are completely etched.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: October 25, 2011
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Toshiharu Furukawa, William R. Tonti
  • Publication number: 20110254121
    Abstract: Voltage programmable anti-fuse structures and methods are provided that include at least one conductive material island atop a dielectric surface that is located between two adjacent conductive features. In one embodiment, the anti-fuse structure includes a dielectric material having at least two adjacent conductive features embedded therein. At least one conductive material island is located on an upper surface of the dielectric material that is located between the at least two adjacent conductive features. A dielectric capping layer is located on exposed surfaces of the dielectric material, the at least one conductive material island and the at least two adjacent conductive features. When the anti-fuse structure is in a programmed state, a dielectric breakdown path is present in the dielectric material that is located beneath the at least one conductive material island which conducts electrical current to electrically couple the two adjacent conductive features.
    Type: Application
    Filed: April 16, 2010
    Publication date: October 20, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Louis L. Hsu, William R. Tonti, Chih-Chao Yang
  • Patent number: 8008696
    Abstract: A complementary metal-oxide-semiconductor (CMOS) optical sensor structure comprises a pixel containing a charge collection well of a same semiconductor material as a semiconductor layer in a semiconductor substrate and at least another pixel containing another charge collection well of a different semiconductor material than the material of the semiconductor layer. The charge collections wells have different band gaps, and consequently, generate charge carriers in response to light having different wavelengths. The CMOS sensor structure thus includes at least two pixels responding to light of different wavelengths, enabling wavelength-sensitive, or color-sensitive, capture of an optical data. Further, a design structure for the inventive complementary metal-oxide-semiconductor (CMOS) image sensor is also provided.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: August 30, 2011
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Toshiharu Furukawa, Robert Robison, William R. Tonti
  • Patent number: 7986022
    Abstract: A diode comprises a substrate formed of a first material having a first doping polarity. The substrate has a planar surface and at least one semispherical structure extending from the planar surface. The semispherical structure is formed of the first material. A layer of second material is over the semispherical structure. The second material comprises a second doping polarity opposite the first doping polarity. The layer of second material conforms to the shape of the semispherical structure. A first electrical contact is connected to the substrate, and a second electrical contact is connected to the layer of second material. Additional semiconductor structures are formed by fabricating additional layers over the original layers.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: July 26, 2011
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Toshiharu Furukawa, Robert R. Robison, William R. Tonti, Richard Q. Williams
  • Patent number: 7981731
    Abstract: A programmable element that has a first diode having an electrode and a first insulator disposed between the substrate and said electrode of said first device, said first insulator having a first value of a given characteristic, and an FET having an electrode and a second insulator disposed between the substrate and said electrode of said second device, said second insulator having a second value of said given characteristic that is different from said first value. The electrodes of the diode and the FET are coupled to one another, and a source of programming energy is coupled to the diode to cause it to permanently decrease in resistivity when programmed. The programmed state of the diode is indicated by a current in the FET, which is read by a sense latch. Thus a small resistance change in the diode translates to a large signal gain/change in the latch. This allows the diode to be programmed at lower voltages.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: July 19, 2011
    Assignee: International Business Machines Corporation
    Inventors: John A. Fifield, Russell J. Houghton, William R. Tonti
  • Publication number: 20110169129
    Abstract: Disclosed are embodiments of a circuit and method for electroplating a feature (e.g., a BEOL anti-fuse device) onto a wafer. The embodiments eliminate the use of a seed layer and, thereby, minimize subsequent processing steps (e.g., etching or chemical mechanical polishing (CMP)). Specifically, the embodiments allow for selective electroplating metal or alloy materials onto an exposed portion of a metal layer in a trench on the front side of a substrate. This is accomplished by providing a unique wafer structure that allows a current path to be established from a power supply through a back side contact and in-substrate electrical connector to the metal layer. During electrodeposition, current flow through the current path can be selectively controlled. Additionally, if the electroplated feature is an anti-fuse device, current flow through this current path can also be selectively controlled in order to program the anti-fuse device.
    Type: Application
    Filed: March 25, 2011
    Publication date: July 14, 2011
    Applicant: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Toshiharu Furukawa, William R. Tonti
  • Publication number: 20110169127
    Abstract: A design structure is provided for interconnect structures containing various capping materials for electrical fuses and other related applications. The structure includes a first interconnect structure having a first interfacial structure and a second interconnect structure adjacent to the first structure. The second interconnect structure has second interfacial structure different from the first interfacial structure.
    Type: Application
    Filed: March 21, 2011
    Publication date: July 14, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Louis L. HSU, William R. Tonti, Chih-Chao Yang