Patents by Inventor William S. Watson

William S. Watson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11563990
    Abstract: A media player system is provided for receiving and processing a media program that uses a time interval interval tD required to decode ND frames of the media program segment. The media system receives the requested media program segment, processes the segment and determines if the throughput of the media program differs from the desired presentation throughput by a tolerance amount. Both decoding and rendering performance are determined and used to determine presentation throughput, and to determine if heavier or lighter variants of the media program should be requested for subsequent media program segments.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: January 24, 2023
    Assignee: ARRIS Enterprises LLC
    Inventors: William S. Watson, Kuang Ming Chen, Nick Baciu
  • Publication number: 20220360812
    Abstract: A method for decoding image frames at a client is described. The method includes generating an estimated image frame after receiving an encoded image frame of a stream of encoded image frames. The method further includes decoding the encoded image frame when the encoded image frame is received at a decode interval set for a frame rate of presentation. The method includes using the estimated image frame when a corresponding encoded image frame fails to arrive within the stream for presentation at the frame rate.
    Type: Application
    Filed: July 19, 2022
    Publication date: November 10, 2022
    Inventor: William S. Watson
  • Patent number: 11418806
    Abstract: A method for decoding image frames at a client is described. The method includes generating an estimated image frame after receiving an encoded image frame of a stream of encoded image frames. The method further includes decoding the encoded image frame when the encoded image frame is received at a decode interval set for a frame rate of presentation. The method includes using the estimated image frame when a corresponding encoded image frame fails to arrive within the stream for presentation at the frame rate.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: August 16, 2022
    Assignee: Sony Interactive Entertainment Inc.
    Inventor: William S. Watson
  • Publication number: 20220109656
    Abstract: A method and video decoder system using the method are provided for identifying video frames in an encoded or encrypted video stream without performing decoding or decryption. The method includes: receiving a video data stream comprised of a plurality of transport stream (TS) packets; detecting a first video frame in the video data stream, wherein detection of the first video frame includes registering a last checked position at the start of the video data stream, examining bytes in a next TS packet to identify a predetermined pattern indicating a network abstraction layer (NAL) unit, repeating the examining step until two TS packets have been identified that include an NAL unit, wherein the last checked position is updated after each examining step, and identifying a video frame based on a position of the NAL unit identified in the two TS packets; and repeating the detecting step for a plurality of additional video frames in the video data stream.
    Type: Application
    Filed: December 17, 2021
    Publication date: April 7, 2022
    Applicant: ARRIS Enterprises LLC
    Inventors: Rafie Shamsaasef, Polly Tang, Kuang Ming Chen, William S. Watson
  • Patent number: 11206244
    Abstract: A method and video decoder system using the method are provided for identifying video frames in an encoded or encrypted video stream without performing decoding or decryption. The method includes: receiving a video data stream comprised of a plurality of transport stream (TS) packets; detecting a first video frame in the video data stream, wherein detection of the first video frame includes registering a last checked position at the start of the video data stream, examining bytes in a next TS packet to identify a predetermined pattern indicating a network abstraction layer (NAL) unit, repeating the examining step until two TS packets have been identified that include an NAL unit, wherein the last checked position is updated after each examining step, and identifying a video frame based on a position of the NAL unit identified in the two TS packets; and repeating the detecting step for a plurality of additional video frames in the video data stream.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: December 21, 2021
    Assignee: ARRIS Enterprise LLC
    Inventors: Rafie Shamsaasef, Polly Tang, Kuang Ming Chen, William S. Watson
  • Publication number: 20210160530
    Abstract: A method for decoding image frames at a client is described. The method includes generating an estimated image frame after receiving an encoded image frame of a stream of encoded image frames. The method further includes decoding the encoded image frame when the encoded image frame is received at a decode interval set for a frame rate of presentation. The method includes using the estimated image frame when a corresponding encoded image frame fails to arrive within the stream for presentation at the frame rate.
    Type: Application
    Filed: November 13, 2020
    Publication date: May 27, 2021
    Inventor: William S. Watson
  • Publication number: 20210127146
    Abstract: A media player system is provided for receiving and processing a media program that uses a time interval interval to required to decode ND frames of the media program segment. The media system receives the requested media program segment, processes the segment and determines if the throughput of the media program differs from the desired presentation throughput by a tolerance amount. Both decoding and rendering performance are determined and used to determine presentation throughput, and to determine if heavier or lighter variants of the media program should be requested for subsequent media program segments.
    Type: Application
    Filed: January 5, 2021
    Publication date: April 29, 2021
    Inventors: William S. Watson, Kuang Ming Chen, Nick Baciu
  • Patent number: 10893309
    Abstract: A media player system is provided for receiving and processing a media program that uses a time interval interval to required to decode ND frames of the media program segment. The media system receives the requested media program segment, processes the segment and determines if the throughput of the media program differs from the desired presentation throughput by a tolerance amount. Both decoding and rendering performance are determined and used to determine presentation throughput, and to determine if heavier or lighter variants of the media program should be requested for subsequent media program segments.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: January 12, 2021
    Assignee: ARRIS Enterprises LLC
    Inventors: William S. Watson, Kuang Ming Chen, Nick Baciu
  • Publication number: 20200213640
    Abstract: A media player system is provided for receiving and processing a media program that uses a time interval interval to required to decode ND frames of the media program segment. The media system receives the requested media program segment, processes the segment and determines if the throughput of the media program differs from the desired presentation throughput by a tolerance amount. Both decoding and rendering performance are determined and used to determine presentation throughput, and to determine if heavier or lighter variants of the media program should be requested for subsequent media program segments.
    Type: Application
    Filed: December 26, 2018
    Publication date: July 2, 2020
    Inventors: William S. Watson, Kuang Ming Chen, Nick Baciu
  • Publication number: 20200204525
    Abstract: A method and video decoder system using the method are provided for identifying video frames in an encoded or encrypted video stream without performing decoding or decryption. The method includes: receiving a video data stream comprised of a plurality of transport stream (TS) packets; detecting a first video frame in the video data stream, wherein detection of the first video frame includes registering a last checked position at the start of the video data stream, examining bytes in a next TS packet to identify a predetermined pattern indicating a network abstraction layer (NAL) unit, repeating the examining step until two TS packets have been identified that include an NAL unit, wherein the last checked position is updated after each examining step, and identifying a video frame based on a position of the NAL unit identified in the two TS packets; and repeating the detecting step for a plurality of additional video frames in the video data stream.
    Type: Application
    Filed: December 21, 2018
    Publication date: June 25, 2020
    Inventors: Rafie Shamsaasef, Polly Tang, Kuang Ming Chen, William S. Watson
  • Patent number: 8661898
    Abstract: An apparatus and/or method that corrects for tuning errors in vibrating structure gyroscopes that are configured to be driven along a plurality of axes without the need for dedicated torque elements. The correction is accomplished by introducing a phase offset in the drive signal of one or more of the drive elements relative to other drive elements to minimize or reduce the quadrature signal. The tuning may be accomplished as a one time “set and forget” adjustment, as a manual adjustment performed at the discretion of the user, or as a closed loop active correction system. The technique improves the tuning of the resonator assembly, rather than merely compensating for the mistuning. Accordingly, for various embodiments of the invention, the destructive interference between the plurality of drive axes is reduced. Conservation of vibrational energy present in the resonator is thus enhanced, with less vibrational energy transferred to the support structure.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: March 4, 2014
    Assignee: Watson Industries, Inc.
    Inventor: William S. Watson
  • Patent number: 7877887
    Abstract: An apparatus and method for compensation of the effects of various bias errors encountered by inertial rate gyroscopes, particularly vibrating element gyroscopes, configured to detect heading relative to true north. Certain embodiments are suitable for reducing rotational dynamic errors associated with rotating gyroscopes. Other embodiments may include compensation of biases not related to rotational dynamics, such as thermal drift. The various methods disclosed may also account for the bias by sampling the rotational vector of the earth at an arbitrary heading, and at a heading that is 180° offset from the arbitrary heading. The sequence may be repeated numerous times to compensate for bias drift. The bias drift may be constant with respect to time (linear) or changing over time (non-linear) during the data acquisition sequence. Some embodiments include methods that utilize data from accelerometers to infer the bank and elevation angles as well as earth latitude location relative to the equator.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: February 1, 2011
    Assignee: Watson Industries, Inc.
    Inventor: William S. Watson
  • Patent number: 7801694
    Abstract: A method for compensating for bias and scale factor errors in vibrating structure gyroscopes. Certain embodiments utilize the functional relationship that bias and scale factor errors have with resonant frequency of vibration in the main vibrating body. Other embodiments utilize the functional relationships that other drive parameters of vibrating structure gyroscopes, such as drive voltage, have with bias and scale factor errors. The various methods may be used repeatedly during normal gyroscope operation in order to continually compensate for the bias and scale factor errors.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: September 21, 2010
    Assignee: Watson Industries, Inc.
    Inventor: William S. Watson
  • Publication number: 20100089158
    Abstract: An apparatus and/or method that corrects for tuning errors in vibrating structure gyroscopes that are configured to be driven along a plurality of axes without the need for dedicated torque elements. The correction is accomplished by introducing a phase offset in the drive signal of one or more of the drive elements relative to other drive elements to minimize or reduce the quadrature signal. The tuning may be accomplished as a one time “set and forget” adjustment, as a manual adjustment performed at the discretion of the user, or as a closed loop active correction system. The technique improves the tuning of the resonator assembly, rather than merely compensating for the mistuning. Accordingly, for various embodiments of the invention, the destructive interference between the plurality of drive axes is reduced. Conservation of vibrational energy present in the resonator is thus enhanced, with less vibrational energy transferred to the support structure.
    Type: Application
    Filed: October 14, 2009
    Publication date: April 15, 2010
    Inventor: William S. Watson
  • Patent number: 7617727
    Abstract: A vibrating inertial rate sensor has operational elements that define axes that are rotationally offset or “skewed” from a node or anti-node reference axis. The skew may be relative to separate node or anti-node reference axes, or take the form of an element that is “split” about the same node axis. Both the drive signal and the sense signal may be resolved from a common set of sensing elements. The drive elements may also operate on a skewed axis angle to rotationally offset the vibration pattern to affect active torquing of the gyroscope. Skewed drive elements may be combined with skewed or split elements on the same device. The skewed sensing scheme may be applied to vibratory systems having one or more node axes. The skewed drive scheme may be applied to vibratory systems having two or more node axes to affect active torquing.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: November 17, 2009
    Assignee: Watson Industries, Inc.
    Inventor: William S. Watson
  • Publication number: 20090119937
    Abstract: An apparatus and method for compensation of the effects of various bias errors encountered by inertial rate gyroscopes, particularly vibrating element gyroscopes, configured to detect heading relative to true north. Certain embodiments are suitable for reducing rotational dynamic errors associated with rotating gyroscopes. Other embodiments may include compensation of biases not related to rotational dynamics, such as thermal drift. The various methods disclosed may also account for the bias by sampling the rotational vector of the earth at an arbitrary heading, and at a heading that is 180° offset from the arbitrary heading. The sequence may be repeated numerous times to compensate for bias drift. The bias drift may be constant with respect to time (linear) or changing over time (non-linear) during the data acquisition sequence. Some embodiments include methods that utilize data from accelerometers to infer the bank and elevation angles as well as earth latitude location relative to the equator.
    Type: Application
    Filed: November 13, 2007
    Publication date: May 14, 2009
    Inventor: William S. Watson
  • Patent number: 7526957
    Abstract: A vibrating inertial rate sensor has sense elements that operate on axes that are rotationally skewed from a node reference axis, enabling both a rate sense and a drive sense determination. Alternatively, the skew may be applied to rotationally offset the drive elements from antinode reference axes to affect active torquing of the gyroscope. The skewed sensing scheme may be applied to vibratory systems having one or more node axes. The skewed drive scheme may be applied to vibratory systems having two or more node axes to affect active torquing.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: May 5, 2009
    Assignee: Watson Industries, Inc.
    Inventor: William S. Watson
  • Patent number: RE42731
    Abstract: A structure and arrangement for improving the accuracy and efficiency of an angular rate sensing gyroscope is herein disclosed. Voltage pick-off conductors are applied to an area of the surface of a resonating element of an angular rate sensing gyroscope that is subject to substantially zero stress when the gyroscope is rotationally stationary. Actuator conductors are similarly applied to a resonating element at a location bounded by areas of the resonating element subject to substantially uniform levels of stress when the gyroscope is rotationally stationary. A method for improving the voltage response of a piezoelectric resonating element is also disclosed.
    Type: Grant
    Filed: September 14, 2000
    Date of Patent: September 27, 2011
    Assignee: Watson Industries, Inc.
    Inventor: William S. Watson
  • Patent number: RE42916
    Abstract: An angular rate sensor system [10] comprising a vibratory sensing element [12] and signal processing circuit [14]. The element [12] is preferably a polymorphic rectangular bar fabricated from two layers of piezoceramic material [26, 28] divided by a thin center electrode [Ec], and a plurality of electrodes [E1-E4] scored onto the planar conductive surfaces [30, 32]. The element [12] is suspended at its acoustic nodes [N, N?] to vibrate in one direction [V] normal to the physical plane of the electrodes [Ec, E1-E4] using any suitable mounting structure such as parallel crossed filaments [34] or inwardly angled support arms [64] that provide predetermined degrees of lateral [S?] and longitudinal [S] stiffness. The circuit [14] may optionally constitute totally shared [FIG. 7], partially shared [FIG. 8], or totally isolated [FIG. 9] driving and sensing functions, the corresponding element [12] being configured with dual-pair, single-pair, or single-triple outer electrodes [E1-E4], respectively.
    Type: Grant
    Filed: January 6, 2005
    Date of Patent: November 15, 2011
    Assignee: Watson Industries, Inc.
    Inventor: William S. Watson
  • Patent number: RE43755
    Abstract: A structure and arrangement for improving the accuracy and efficiency of an angular rate sensing gyroscope is herein disclosed. Voltage pick-off conductors are applied to an area of the surface of a resonating element of an angular rate sensing gyroscope that is subject to substantially zero stress when the gyroscope is rotationally stationary. Actuator conductors are similarly applied to a resonating element at a location bounded by areas of the resonating element subject to substantially uniform levels of stress when the gyroscope is rotationally stationary. A method for improving the voltage response of a piezoelectric resonating element is also disclosed.
    Type: Grant
    Filed: September 14, 2000
    Date of Patent: October 23, 2012
    Assignee: Watson Industries, Inc.
    Inventor: William S. Watson