Patents by Inventor William Santiago-Fernandez

William Santiago-Fernandez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180061196
    Abstract: Tamper-respondent assemblies and methods of fabrication are provided which include a multi-layer stack having multiple discrete component layers stacked and electrically connected together via a plurality of electrical contacts in between the component layers. Further, the tamper-respondent assembly includes a tamper-respondent electronic circuit structure embedded within the multi-layer stack. The tamper-respondent electronic circuit structure includes at least one tamper-respondent sensor embedded, at least in part, within at least one component layer of the multiple discrete component layers of the multi-layer stack. The tamper-respondent electronic circuit structure defines a secure volume within the multi-layer stack. For instance, the tamper-respondent electronic circuit structure may be fully embedded within the multi-layer stack, with monitor circuitry of the tamper-respondent electronic circuit structure residing within the secure volume within the multi-layer stack.
    Type: Application
    Filed: October 24, 2017
    Publication date: March 1, 2018
    Inventors: James A. BUSBY, Phillip Duane ISAACS, William SANTIAGO-FERNANDEZ
  • Patent number: 9894749
    Abstract: Tamper-respondent assemblies and methods of fabrication are provided which include at least one tamper-respondent sensor having unexposed circuit lines forming, at least in part, one or more tamper-detect network(s), and the tamper-respondent sensor having at least one external bond region. The tamper-respondent assembly further includes at least one conductive trace and an adhesive. The conductive trace(s) forms, at least in part, the one or more tamper-detect network(s), and is exposed, at least in part, on the tamper-respondent sensor(s) within the external bond region(s). The adhesive contacts the conductive trace(s) within the external bond region(s) of the tamper-respondent sensor(s), and the adhesive, in part, facilitates securing the at least one tamper-respondent sensor within the tamper-respondent assembly. In enhanced embodiments, the conductive trace(s) is a chemically compromisable conductor susceptible to damage during a chemical attack on the adhesive within the external bond region(s).
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: February 13, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: William L. Brodsky, James A. Busby, Zachary T. Dreiss, Michael J. Fisher, David C. Long, William Santiago-Fernandez, Thomas Weiss
  • Patent number: 9881880
    Abstract: Tamper-proof electronic packages and fabrication methods are provided which include a glass substrate. The glass substrate is stressed glass with a compressively-stressed surface layer. Further, one or more electronic components are secured to the glass substrate within a secure volume of the tamper-proof electronic package. In operation, the glass substrate is configured to fragment with an attempted intrusion event into the electronic package, and the fragmenting of the glass substrate also fragments the electronic component(s) secured to the glass substrate, thereby destroying the electronic component(s). In certain implementations, the glass substrate has undergone ion-exchange processing to provide the stressed glass.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: January 30, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James A. Busby, Silvio Dragone, Michael A. Gaynes, Kenneth P. Rodbell, William Santiago-Fernandez
  • Patent number: 9877383
    Abstract: Tamper-respondent assemblies and fabrication methods are provided which incorporate enclosure to circuit board protection. The tamper-respondent assemblies include a circuit board, and an electronic enclosure mounted to the circuit board and facilitating enclosing at least one electronic component within a secure volume. A tamper-respondent electronic circuit structure facilitates defining the secure volume, and the tamper-respondent electronic circuit structure includes a tamper-respondent circuit. An adhesive is provided to secure, in part, the electronic enclosure to the circuit board. The adhesive contacts, at least in part, the tamper-respondent circuit so that an attempted separation of the electronic enclosure from the circuit board causes the adhesive to break the tamper-respondent circuit, facilitating detection of the separation by a monitor circuit of the tamper-respondent electronic circuit structure.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: January 23, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: William L. Brodsky, James A. Busby, Edward N. Cohen, Silvio Dragone, Michael J. Fisher, David C. Long, Michael T. Peets, William Santiago-Fernandez, Thomas Weiss
  • Publication number: 20170332485
    Abstract: Tamper-proof electronic packages and fabrication methods are provided which include a glass enclosure enclosing, at least in part, at least one electronic component within a secure volume, and a tamper-respondent detector. The glass enclosure includes stressed glass with a compressively-stressed surface layer, and the tamper-respondent detector monitors, at least in part, the stressed glass to facilitate defining the secure volume. The stressed glass fragments with an attempted intrusion event through the stressed glass, and the tamper-respondent detector detects the fragmenting of the stressed glass. In certain embodiments, the stressed glass may be a machined glass enclosure that has undergone ion-exchange processing, and the compressively-stressed surface layer of the stressed glass may be compressively-stressed to ensure that the stressed glass fragments into glass particles of fragmentation size less than 1000 ?m with the intrusion event.
    Type: Application
    Filed: May 13, 2016
    Publication date: November 16, 2017
    Inventors: James A. BUSBY, Silvio DRAGONE, Michael J. FISHER, Michael A. GAYNES, David C. LONG, Kenneth P. RODBELL, William SANTIAGO-FERNANDEZ, Thomas WEISS
  • Publication number: 20170330844
    Abstract: Tamper-proof electronic packages and fabrication methods are provided which include a glass substrate. The glass substrate is stressed glass with a compressively-stressed surface layer. Further, one or more electronic components are secured to the glass substrate within a secure volume of the tamper-proof electronic package. In operation, the glass substrate is configured to fragment with an attempted intrusion event into the electronic package, and the fragmenting of the glass substrate also fragments the electronic component(s) secured to the glass substrate, thereby destroying the electronic component(s). In certain implementations, the glass substrate has undergone ion-exchange processing to provide the stressed glass.
    Type: Application
    Filed: May 13, 2016
    Publication date: November 16, 2017
    Inventors: James A. BUSBY, Silvio DRAGONE, Michael A. GAYNES, Kenneth P. RODBELL, William SANTIAGO-FERNANDEZ
  • Publication number: 20170249813
    Abstract: Tamper-respondent assemblies and methods of fabrication are provided which include a multi-layer stack having multiple discrete component layers stacked and electrically connected together via a plurality of electrical contacts in between the component layers. Further, the tamper-respondent assembly includes a tamper-respondent electronic circuit structure embedded within the multi-layer stack. The tamper-respondent electronic circuit structure includes at least one tamper-respondent sensor embedded, at least in part, within at least one component layer of the multiple discrete component layers of the multi-layer stack. The tamper-respondent electronic circuit structure defines a secure volume within the multi-layer stack. For instance, the tamper-respondent electronic circuit structure may be fully embedded within the multi-layer stack, with monitor circuitry of the tamper-respondent electronic circuit structure residing within the secure volume within the multi-layer stack.
    Type: Application
    Filed: February 25, 2016
    Publication date: August 31, 2017
    Inventors: James A. BUSBY, Phillip Duane ISAACS, William SANTIAGO-FERNANDEZ
  • Patent number: 9717154
    Abstract: Tamper-respondent assemblies and methods of fabrication are provided which include an electronic enclosure and a tamper-respondent electronic circuit structure. The electronic enclosure encloses, at least in part, at least one electronic component to be protected, and includes an inner main surface, and an inner sidewall surface which has at least one inner-sidewall corner. The tamper-respondent electronic circuit structure includes a tamper-respondent sensor covering, at least in part, the inner sidewall surface of the electronic enclosure. The tamper-respondent sensor includes a flexible layer(s) with tamper-detect circuit lines and multiple slots provided therein. The multiple slots facilitate disposing the tamper-respondent sensor to cover the at least one inner-sidewall corner of the inner sidewall surface by allowing for one or more regions of overlap of the flexible layer(s) of the tamper-respondent sensor at the at least one inner-sidewall corner of the electronic enclosure.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: July 25, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: William L. Brodsky, John R. Dangler, Zachary T. Dreiss, David C. Long, Michael T. Peets, William Santiago-Fernandez, Thomas Weiss
  • Publication number: 20170181274
    Abstract: Tamper-respondent assemblies and fabrication methods are provided which incorporate enclosure to circuit board protection. The tamper-respondent assemblies include a circuit board, and an electronic enclosure mounted to the circuit board and facilitating enclosing at least one electronic component within a secure volume. A tamper-respondent electronic circuit structure facilitates defining the secure volume, and the tamper-respondent electronic circuit structure includes a tamper-respondent circuit. An adhesive is provided to secure, in part, the electronic enclosure to the circuit board. The adhesive contacts, at least in part, the tamper-respondent circuit so that an attempted separation of the electronic enclosure from the circuit board causes the adhesive to break the tamper-respondent circuit, facilitating detection of the separation by a monitor circuit of the tamper-respondent electronic circuit structure.
    Type: Application
    Filed: February 3, 2017
    Publication date: June 22, 2017
    Inventors: William L. BRODSKY, James A. BUSBY, Edward N. COHEN, Silvio DRAGONE, Michael J. FISHER, David C. LONG, Michael T. PEETS, William SANTIAGO-FERNANDEZ, Thomas WEISS
  • Patent number: 9661747
    Abstract: Tamper-respondent assemblies and fabrication methods are provided which incorporate enclosure to circuit board protection. The tamper-respondent assemblies include a circuit board, and an electronic enclosure mounted to the circuit board and facilitating enclosing at least one electronic component within a secure volume. A tamper-respondent electronic circuit structure facilitates defining the secure volume, and the tamper-respondent electronic circuit structure includes a tamper-respondent circuit. An adhesive is provided to secure, in part, the electronic enclosure to the circuit board. The adhesive contacts, at least in part, the tamper-respondent circuit so that an attempted separation of the electronic enclosure from the circuit board causes the adhesive to break the tamper-respondent circuit, facilitating detection of the separation by a monitor circuit of the tamper-respondent electronic circuit structure.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: May 23, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: William L. Brodsky, James A. Busby, Edward N. Cohen, Silvio Dragone, Michael J. Fisher, David C. Long, Michael T. Peets, William Santiago-Fernandez, Thomas Weiss
  • Publication number: 20170135237
    Abstract: Tamper-respondent assemblies and methods of fabrication are provided which include an electronic enclosure and a tamper-respondent electronic circuit structure. The electronic enclosure encloses, at least in part, at least one electronic component to be protected, and includes an inner main surface, and an inner sidewall surface which has at least one inner-sidewall corner. The tamper-respondent electronic circuit structure includes a tamper-respondent sensor covering, at least in part, the inner sidewall surface of the electronic enclosure. The tamper-respondent sensor includes a flexible layer(s) with tamper-detect circuit lines and multiple slots provided therein. The multiple slots facilitate disposing the tamper-respondent sensor to cover the at least one inner-sidewall corner of the inner sidewall surface by allowing for one or more regions of overlap of the flexible layer(s) of the tamper-respondent sensor at the at least one inner-sidewall corner of the electronic enclosure.
    Type: Application
    Filed: January 19, 2017
    Publication date: May 11, 2017
    Inventors: William L. BRODSKY, John R. DANGLER, Zachary T. DREISS, David C. LONG, Michael T. PEETS, William SANTIAGO-FERNANDEZ, Thomas WEISS
  • Publication number: 20170094778
    Abstract: Tamper-respondent assemblies and methods of fabrication are provided which include at least one tamper-respondent sensor having unexposed circuit lines forming, at least in part, one or more tamper-detect network(s), and the tamper-respondent sensor having at least one external bond region. The tamper-respondent assembly further includes at least one conductive trace and an adhesive. The conductive trace(s) forms, at least in part, the one or more tamper-detect network(s), and is exposed, at least in part, on the tamper-respondent sensor(s) within the external bond region(s). The adhesive contacts the conductive trace(s) within the external bond region(s) of the tamper-respondent sensor(s), and the adhesive, in part, facilitates securing the at least one tamper-respondent sensor within the tamper-respondent assembly. In enhanced embodiments, the conductive trace(s) is a chemically compromisable conductor susceptible to damage during a chemical attack on the adhesive within the external bond region(s).
    Type: Application
    Filed: September 25, 2015
    Publication date: March 30, 2017
    Inventors: William L. BRODSKY, James A. BUSBY, Zachary T. DREISS, Michael J. FISHER, David C. LONG, William SANTIAGO-FERNANDEZ, Thomas WEISS
  • Publication number: 20170094819
    Abstract: Tamper-respondent assemblies and methods of fabrication are provided which include an electronic enclosure and a tamper-respondent electronic circuit structure. The electronic enclosure encloses, at least in part, at least one electronic component to be protected, and includes an inner main surface, and an inner sidewall surface which has at least one inner-sidewall corner. The tamper-respondent electronic circuit structure includes a tamper-respondent sensor covering, at least in part, the inner sidewall surface of the electronic enclosure. The tamper-respondent sensor includes multiple slots provided therein. The multiple slots facilitate disposing the tamper-respondent sensor to cover the at least one inner-sidewall corner of the inner sidewall surface by allowing for one or more regions of overlap of the tamper-respondent sensor at the at least one inner-sidewall corner of the electronic enclosure.
    Type: Application
    Filed: September 25, 2015
    Publication date: March 30, 2017
    Inventors: William L. BRODSKY, John R. DANGLER, Zachary T. DREISS, David C. LONG, Michael T. PEETS, William SANTIAGO-FERNANDEZ, Thomas WEISS
  • Publication number: 20170094820
    Abstract: Methods of fabricating tamper-respondent assemblies with bond protection are provided which include at least one tamper-respondent sensor having unexposed circuit lines forming, at least in part, one or more tamper-detect network(s), and the tamper-respondent sensor having at least one external bond region. The tamper-respondent assembly further includes at least one conductive trace and an adhesive. The conductive trace(s) forms, at least in part, the one or more tamper-detect network(s), and is exposed, at least in part, on the tamper-respondent sensor(s) within the external bond region(s). The adhesive contacts the conductive trace(s) within the external bond region(s) of the tamper-respondent sensor(s), and the adhesive, in part, facilitates securing the at least one tamper-respondent sensor within the tamper-respondent assembly.
    Type: Application
    Filed: November 16, 2015
    Publication date: March 30, 2017
    Inventors: William L. BRODSKY, James A. BUSBY, Zachary T. DREISS, Michael J. FISHER, David C. LONG, William SANTIAGO-FERNANDEZ, Thomas WEISS
  • Publication number: 20170089729
    Abstract: Electronic circuits, electronic packages, and methods of fabrication are provided. The electronic circuit includes a multilayer circuit board, and a tamper-respondent sensor embedded within the circuit board. The tamper-respondent sensor defines, at least in part, a secure volume associated with the multilayer circuit board. In certain implementations, the tamper-respondent sensor includes multiple tamper-respondent layers embedded within the circuit board including, for instance, one or more tamper-respondent frames and one or more tamper-respondent mat layers, with the tamper-respondent frame(s) being disposed, at least in part, above the tamper-respondent mat layer(s), which together define the secure volume where extending into the multilayer circuit board.
    Type: Application
    Filed: September 25, 2015
    Publication date: March 30, 2017
    Inventors: William L. BRODSKY, Silvio DRAGONE, Roger S. KRABBENHOFT, David C. LONG, Stefano S. OGGIONI, Michael T. PEETS, William SANTIAGO-FERNANDEZ
  • Publication number: 20170094808
    Abstract: Methods of fabricating electronic circuits and electronic packages are provided. The electronic circuit includes a multilayer circuit board, and a tamper-respondent sensor embedded within the circuit board. The tamper-respondent sensor defines, at least in part, a secure volume associated with the multilayer circuit board. In certain implementations, the tamper-respondent sensor includes multiple tamper-respondent layers embedded within the circuit board including, for instance, one or more tamper-respondent frames and one or more tamper-respondent mat layers, with the tamper-respondent frame(s) being disposed, at least in part, above the tamper-respondent mat layer(s), which together define the secure volume where extending into the multilayer circuit board.
    Type: Application
    Filed: November 16, 2015
    Publication date: March 30, 2017
    Inventors: William L. BRODSKY, Silvio DRAGONE, Roger S. KRABBENHOFT, David C. LONG, Stefano S. OGGIONI, Michael T. PEETS, William SANTIAGO-FERNANDEZ
  • Patent number: 9591776
    Abstract: Tamper-respondent assemblies and methods of fabrication are provided which include an electronic enclosure and a tamper-respondent electronic circuit structure. The electronic enclosure encloses, at least in part, at least one electronic component to be protected, and includes an inner main surface, and an inner sidewall surface which has at least one inner-sidewall corner. The tamper-respondent electronic circuit structure includes a tamper-respondent sensor covering, at least in part, the inner sidewall surface of the electronic enclosure. The tamper-respondent sensor includes multiple slots provided therein. The multiple slots facilitate disposing the tamper-respondent sensor to cover the at least one inner-sidewall corner of the inner sidewall surface by allowing for one or more regions of overlap of the tamper-respondent sensor at the at least one inner-sidewall corner of the electronic enclosure.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: March 7, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: William L. Brodsky, John R. Dangler, Zachary T. Dreiss, David C. Long, Michael T. Peets, William Santiago-Fernandez, Thomas Weiss
  • Patent number: 9575769
    Abstract: A method for updating code images in a system includes booting a first image of a code with a sub-system processor, receiving a second image of the code, performing a security and reliability check of the second image of the code with the sub-system processor, determining whether the security and reliability check of the second image of the code is successful, storing the second image of the code in a first memory device responsive to determining that the security and reliability check of the second image of the code is successful, designating the second image of the code as an active image, and sending the second image of the code to a second memory device, the second memory device communicatively connected with the first memory device and a main processor.
    Type: Grant
    Filed: April 6, 2015
    Date of Patent: February 21, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Vincenzo Condorelli, Silvio Dragone, William Santiago-Fernandez, Tamas Visegrady
  • Patent number: 9554477
    Abstract: Tamper-respondent assemblies and fabrication methods are provided which incorporate enclosure to circuit board protection. The tamper-respondent assemblies include a circuit board, and an electronic enclosure mounted to the circuit board and facilitating enclosing at least one electronic component within a secure volume. A tamper-respondent electronic circuit structure facilitates defining the secure volume, and the tamper-respondent electronic circuit structure includes a tamper-respondent circuit. An adhesive is provided to secure, in part, the electronic enclosure to the circuit board. The adhesive contacts, at least in part, the tamper-respondent circuit so that an attempted separation of the electronic enclosure from the circuit board causes the adhesive to break the tamper-respondent circuit, facilitating detection of the separation by a monitor circuit of the tamper-respondent electronic circuit structure.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: January 24, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: William L. Brodsky, James A. Busby, Edward N. Cohen, Silvio Dragone, Michael J. Fisher, David C. Long, Michael T. Peets, William Santiago-Fernandez, Thomas Weiss
  • Publication number: 20170020003
    Abstract: A circuitized structure with a 3-dimensional configuration. A base structure is provided that includes an insulating substrate of electrically insulating material with a flat configuration, and further includes an electric circuit including at least one layer of electrically conductive material arranged on the insulating substrate. The insulating material includes a thermosetting material being partially cured by stopping a cure thereof at a B-stage before reaching a gel point. The base structure is formed according to the 3-dimensional configuration, and the cure of the thermosetting material is completed.
    Type: Application
    Filed: June 28, 2016
    Publication date: January 19, 2017
    Inventors: Silvio Dragone, Stefano S. Oggioni, William Santiago Fernandez