Patents by Inventor William Sean Kerwin

William Sean Kerwin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9523753
    Abstract: Magnetic resonance (MR) spins are inverted by applying an inversion recovery (IR) radio frequency pulse (50). MR signals are acquired at an inversion time (TI) after the IR radio frequency pulse. TI is selected such that a first tissue of interest (e.g., blood) exhibits negative magnetism excited by the IR radio frequency pulse and a second tissue (e.g., intraplaque hemorrhage tissue) exhibits positive magnetism excited by the IR radio frequency pulse. The acquired magnetic resonance signals are reconstructed to generate spatial pixels or voxels wherein positive pixel or voxel values indicate spatial locations of positive magnetism and negative pixel or voxel values indicates spatial locations of negative magnetism. A first image (28) representative of the first tissue is generated from spatial pixels or voxels having negative signal intensities, and a second image (26) representative of the second tissue is generated from spatial pixels or voxels having positive signal intensities.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: December 20, 2016
    Assignee: Koninklijke Philips N.V.
    Inventors: Jinnan Wang, Michael Günter Helle, William Sean Kerwin, Peter Boernert, Chun Yuan
  • Publication number: 20140043021
    Abstract: Magnetic resonance (MR) spins are inverted by applying an inversion recovery (IR) radio frequency pulse (50). MR signals are acquired at an inversion time (TI) after the IR radio frequency pulse. TI is selected such that a first tissue of interest (e.g., blood) exhibits negative magnetism excited by the IR radio frequency pulse and a second tissue (e.g., intraplaque hemorrhage tissue) exhibits positive magnetism excited by the IR radio frequency pulse. The acquired magnetic resonance signals are reconstructed to generate spatial pixels or voxels wherein positive pixel or voxel values indicate spatial locations of positive magnetism and negative pixel or voxel values indicates spatial locations of negative magnetism. A first image (28) representative of the first tissue is generated from spatial pixels or voxels having negative signal intensities, and a second image (26) representative of the second tissue is generated from spatial pixels or voxels having positive signal intensities.
    Type: Application
    Filed: April 13, 2012
    Publication date: February 13, 2014
    Applicants: THE UNIVERSITY OF WASHINGTON, KONINKLIJKE PHILIPS N.V.
    Inventors: Jinnan Wang, Michael Günter Helle, William Sean Kerwin, Peter Boernert, Chun Yuan