Patents by Inventor William T. Larkins

William T. Larkins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030160369
    Abstract: A semi-active control methodology is provided for a spring/mass system, for example a real-time adjustable shock absorber system. The methodology includes defining a plurality of operating zones based on system parameters and user-definable or preset inputs. The methodology also includes processing to account for non-inertial spring/mass system response and multidimensional forces acting on the system, and an acceleration hedge calculation to accurately define system operation at extrema of travel. The methodology is generally directed at producing a plurality of valve control signals, selecting among the valve control signals, and applying the selected control signal to the valve in a closed-loop feedback system to adjust the energy in the spring/mass system.
    Type: Application
    Filed: January 13, 2003
    Publication date: August 28, 2003
    Inventors: John A. LaPlante, William T. Larkins
  • Publication number: 20030102718
    Abstract: An electrical energy storage system for supplying power to a load comprises a plurality of flywheel energy storage systems, each supplying a power output signal, and a connector circuit. The connector circuit connects the flywheel energy storage systems to the load, but the flywheel energy storage systems are not connected to each other. Each of the flywheel energy storage systems comprises a flywheel turning at an initially predetermined rate, a motor/generator coupled to the flywheel, a bi-directional inverter circuit coupled to the motor/generator and to the load, and a control circuit coupled to the motor/generator and the bi-directional inverter circuit. The control circuit controls the power output signal of the flywheel energy storage system independently of the other flywheel energy storage systems.
    Type: Application
    Filed: November 30, 2001
    Publication date: June 5, 2003
    Inventors: Richard L. Hockney, Geoff B. Lansberry, Vladislav Davidkovich, William T. Larkins, Emil Muchnik
  • Publication number: 20030060766
    Abstract: A bedside-pharmacy system for the preparation and delivery of intravenous drugs. The system includes a liquid inlet for connection to a liquid supply, vial receptacles, and a liquid outlet for providing the intravenous drug in mixed, liquid form to the patient. The system may include a chamber having a variable volume, and a valve mechanism, which may be actuated to control flow between the liquid outlet, the variable-volume chamber, the vial receptacles and the liquid inlet. The system induces change in the volume of the variable-volume chamber and actuates the valve mechanism, so as to introduce liquid from the liquid inlet into the vials and reconstitute or dilute the drugs and so as to deliver the drugs to the patient. In a preferred embodiment, the liquid inlet, the vial receptacles, the variable-volume chamber, the liquid outlet and the valve mechanism (in other words, all components that come into contact with the liquid) are located in a disposable cassette, which may be received in a control unit.
    Type: Application
    Filed: October 8, 2002
    Publication date: March 27, 2003
    Inventors: Dean L. Kamen, Charles M. Grinnell, Marc A. Mandro, Dennis Gilbreath, Kevin Grant, Jason A. Demers, William T. Larkins, Robert Manning, Richard Lanigan
  • Patent number: 6464667
    Abstract: A bedside-pharmacy system for the preparation and delivery of intravenous drugs. The system includes a liquid inlet for connection to a liquid supply, vial receptacles, and a liquid outlet for providing the intravenous drug in mixed, liquid form to the patient. The system may include a chamber having a variable volume, and a valve mechanism, which may be actuated to control flow between the liquid outlet, the variable-volume chamber, the vial receptacles and the liquid inlet. The system induces change in the volume of the variable-volume chamber and actuates the valve mechanism, so as to introduce liquid from the liquid inlet into the vials and reconstitute or dilute the drugs and so as to deliver the drugs to the patient. In a preferred embodiment, the liquid inlet, the vial receptacles, the variable-volume chamber, the liquid outlet and the valve mechanism (in other words, all components that come into contact with the liquid) are located in a disposable cassette, which may be received in a control unit.
    Type: Grant
    Filed: July 22, 1999
    Date of Patent: October 15, 2002
    Assignee: Deka Products Limited Partnership
    Inventors: Dean L. Kamen, Charles M. Grinnell, Marc A. Mandro, Dennis Gilbreath, Kevin Grant, Jason A. Demers, William T. Larkins, Robert Manning, Richard Lanigan
  • Patent number: 6364857
    Abstract: A cassette for use in controlling the flow of IV fluid from a patient to a source. The cassette may include along the fluid passage through the cassette, first and second membrane-based valves (6, 7) on either side of a pressure-conduction chamber (50), and a stopcock-type valve (20). The stopcock valve is preferably located downstream of the second membrane-based valve (7), which is preferably located downstream of the pressure-conduction chamber (50). The membrane defining the valving chamber of the second membrane-based valve (7) is preferably large and resilient, so that the valving chamber (75) may provide a supply of pressurized intravenous fluid to the patient, when the valve (6) is closed and the stopcock valve (20) provides a restriction downstream of the valve (7). The pressure-conduction chamber (50) preferably has a membrane (41) that is stable in the empty-chamber position but relatively unstable in the filled-chamber position.
    Type: Grant
    Filed: November 17, 2000
    Date of Patent: April 2, 2002
    Assignee: DEKA Products Limited Partnership
    Inventors: Larry B. Gray, Philip Houle, William T. Larkins
  • Publication number: 20010007932
    Abstract: A system for controlling flow through a line during intravenous drug delivery. The system is capable of use in conjunction with a bedside-pharmacy system for the preparation and delivery of intravenous drugs. The system includes a disposable cassette with first and second valve chambers and a control unit into which the cassette is capable of being received. The control unit has a cam and first and second actuators. The bedside-pharmacy system may include a liquid inlet for connection to a liquid supply, vial receptacles, and a liquid outlet for providing the intravenous drug in mixed, liquid form to the patient. That system may include a chamber having a variable volume, and a valve mechanism, which may be actuated to control flow between the liquid outlet, the variable-volume chamber, the vial receptacles and the liquid inlet.
    Type: Application
    Filed: February 27, 2001
    Publication date: July 12, 2001
    Inventors: Dean L. Kamen, Charles M. Grinnell, Marc A. Mandro, Dennis Gilbreath, Kevin Grant, Jason A. Demers, William T. Larkins, Robert Manning, Richard Lannigan
  • Patent number: 6234997
    Abstract: A bedside-pharmacy system for the preparation and delivery of intravenous drugs. The system includes a liquid inlet for connection to a liquid supply, vial receptacles, and a liquid outlet for providing the intravenous drug in mixed, liquid form to the patient. The system may include a chamber having a variable volume, and a valve mechanism, which may be actuated to control flow between the liquid outlet, the variable-volume chamber, the vial receptacles and the liquid inlet. The system induces change in the volume of the variable-volume chamber and actuates the valve mechanism, so as to introduce liquid from the liquid inlet into the vials and reconstitute or dilute the drugs and so as to deliver the drugs to the patient. In a preferred embodiment, the liquid inlet, the vial receptacles, the variable-volume chamber, the liquid outlet and the valve mechanism (in other words, all components that come into contact with the liquid) are located in a disposable cassette, which may be received in a control unit.
    Type: Grant
    Filed: July 22, 1999
    Date of Patent: May 22, 2001
    Assignee: Deka Products Limited Partnership
    Inventors: Dean L. Kamen, Charles M. Grinnell, Marc A. Mandro, Dennis Gilbreath, Kevin Grant, Jason A. Demers, William T. Larkins, Robert Manning, Richard Lanigan
  • Patent number: 6210361
    Abstract: A bedside-pharmacy systen for the preparation and delivery of intravenous drugs. The system includes a liquid inlet for connection to a liquid supply, vial receptacles, and a liquid outlet for providing the intravenous drug in mixed, liquid form to the patient. The system may include a chamber having a variable volume, and a valve mechanism, which may be actuated to control flow between the liquid outlet, the variable-volume chamber, the vial receptacles and the liquid inlet. The system induces change in the volume of the variable-volume chamber and actuates the valve mechanism, so as to introduce liquid from the liquid inlet into the vials and reconstitute or dilute the drugs and so as to deliver the drugs to the patient. In a preferred embodiment, the liquid inlet, the vial receptacles, the variable-volume chamber, the liquid outlet and the valve mechanism (in other words, all components that come into contact with the liquid) are located in a disposable cassette, which may be received in a control unit.
    Type: Grant
    Filed: August 20, 1998
    Date of Patent: April 3, 2001
    Assignee: Deka Products Limited Partnership
    Inventors: Dean L. Kamen, Charles M. Grinnell, Marc A. Mandro, Dennis Gilbreath, Kevin Grant, Jason A. Demers, William T. Larkins, Robert Manning, Richard Lanigan
  • Patent number: 6165154
    Abstract: A cassette for controlling the flow of IV fluid from a patient to a source. The cassette preferably includes, along the fluid passage through the cassette, first and second membrane-based valves (6, 7) on either side of a pressure-conduction chamber (50), and a stopcock-type valve (20). The stopcock valve is preferably located downstream of the second membrane-based valve (7), which is preferably located downstream of the pressure-conduction chamber (50). The membrane defining the valving chamber of the second membrane-based valve (7) is preferably large and resilient, so that the valving chamber (75) may provide a supply of pressurized intravenous fluid to the patient, when the valve is closed and the stopcock valve provides a restriction downstream of the valve. The pressure-conduction chamber (50) preferably has a membrane (41) that is stable in the empty-chamber position but relatively unstable in the filled-chamber position.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: December 26, 2000
    Assignee: DEKA Products Limited Partnership
    Inventors: Larry B. Gray, Philip Houle, William T. Larkins
  • Patent number: 5935105
    Abstract: An air elimination system is provided for an intravenous fluid delivery system for intravenous injection of fluid into a patient. An air-detection apparatus is disposed in an intravenous fluid line. At the top end of the line is attached a chamber where air may be separated from the fluid. The separation chamber may be a drip chamber, a metering chamber or the intravenous supply. When air is detected, a valve or valves are switched, so that the intravenous fluid is prevented from flowing to the patient, and so that, when a pump is turned on, the fluid is pumped to the separation chamber. In a preferred embodiment, the volume of pump's fluid capacity is greater than the volume of the fluid capacity of the intravenous line between the pump and the separation chamber so that the pump can force air back up the intravenous line all the way to the separation chamber.
    Type: Grant
    Filed: October 30, 1997
    Date of Patent: August 10, 1999
    Assignee: Deka Products Limited Partnership
    Inventors: Robert Manning, William T. Larkins, Philip Houle, Dean L. Kamen, Valentine Faust
  • Patent number: 5772637
    Abstract: An intravenous-line flow-control system for receiving a disposable cassette disposed in the intravenous line. The system prevents the free flow of intravenous fluid through the cassette when the cassette is removed from the system. The system includes a control unit having a door or similar structure for holding the cassette against a receiving surface. The control unit includes a stepper motor and a transmission member for turning a rotatable control valve on the cassette in order to restrict variably the flow of fluid through the cassette. When the door is being opened but while the cassette is still held against the receiving surface, a motor-disengagement mechanism moves at least the transmission member, and preferably the stepper motor as well, from a first position, from which the control valve may be engaged by the transmission member, to a second position, in which the transmission member is disengaged from the control valve.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: June 30, 1998
    Assignee: DEKA Products Limited Partnership
    Inventors: R. Kurt Heinzmann, Richard Lanigan, Peter Lund, Dean L. Kamen, William T. Larkins, Robert Manning
  • Patent number: 5755683
    Abstract: A cassette for controlling the flow of IV fluid from a patient to a source. The cassette preferably includes, along the fluid passage through the cassette, first and second membrane-based valves on either side of a pressure-conduction chamber, and a stopcock-type valve. The stopcock valve is preferably located downstream of the second membrane-based valve, which is preferably located downstream of the pressure-conduction chamber. The stopcock control valve preferably has two rigid cylindrical members with complementary surfaces, wherein one member includes a tapered groove defined on its complementary surface. The two complementary surfaces define a space therebetween, instead of having an interference fit, and a resilient sealing member is disposed in this space.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: May 26, 1998
    Assignee: DEKA Products Limited Partnership
    Inventors: Philip R. Houle, William T. Larkins
  • Patent number: 5713865
    Abstract: An air elimination system is provided for an intravenous fluid delivery system for intravenous injection of fluid into a patient. An air-detection apparatus 5 is disposed in an intravenous fluid line 3. At the top end of the line 3 is attached a chamber 1, 2, 12 where air may be separated from the fluid. The separation chamber may be a drip chamber 12, a metering chamber 2 or the intravenous supply 1. When air is detected, a valve 11 or valves 7, 9 are switched, so that the intravenous fluid is prevented from flowing to the patient, and so that, when a pump 4 is turned on, the fluid is pumped to the separation chamber 1, 2, 12. In a preferred embodiment, the volume of pump's fluid capacity is greater than the volume of the fluid capacity of the intravenous line 31 between the pump 4 and the separation chamber 1, 2, 12, so that the pump can force air back up the intravenous line all the way to the separation chamber.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: February 3, 1998
    Assignee: DEKA Products Limited Partnership
    Inventors: Robert Manning, William T. Larkins, Philip Houle, Dean L. Kamen, Valentine Faust
  • Patent number: 5641892
    Abstract: The flow of an intravenous (IV) fluid from a IV source through an IV line to a patient is controlled, while monitoring whether there is any bubble in the liquid being delivered to the patient. Disposed in the line is a region having a first portion containing a measurement gas and a second portion containing a segment of the liquid flowing through the line. The liquid in this region is tested for the presence of an air bubble. The sum of the first portion's volume and the second portion's volume should be a constant volume. The region is part of an acoustically resonant system, in the volume of the measurement gas in the first portion of the region can be determined from the resonant frequency. Preferably, the acoustically resonant system is tuned so as to prevent the presence of a bubble from significantly affecting the measurement of the volume of the region's first portion.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: June 24, 1997
    Assignee: DEKA Products Limited Partnership
    Inventors: William T. Larkins, Russell Beavis, Dean L. Kamen