Patents by Inventor Winston Chern

Winston Chern has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240055215
    Abstract: An X-ray source design for improved reliability by mitigating the impact of vacuum arcs, ion back bombardment and ion sputtering includes an X-ray source including one or more field emitter arrays and a circuit configured to control the one or more field emitter arrays. The one or more field emitter arrays include a gate and an emitter. The circuit is configured to apply a voltage between the gate and the emitter.
    Type: Application
    Filed: August 10, 2023
    Publication date: February 15, 2024
    Inventor: Winston Chern
  • Publication number: 20230210484
    Abstract: A modular x-ray imaging system includes an application specific module, a base unit in communication with the application specific module, and a mechanical support configured to support the x-ray application specific module. The base unit and application specific module are configured to communicate by wired and/or wireless communication.
    Type: Application
    Filed: January 5, 2023
    Publication date: July 6, 2023
    Inventor: Winston Chern
  • Publication number: 20230189530
    Abstract: A method of writing data to a Ferroelectric-FET (FeFET) based non-volatile memory device can be provided by applying a voltage pulse at a write voltage level with a write polarity at a gate electrode of a FeFET device with reference to a source electrode of the FeFET device, as a write operation to the FeFET device to establish a state for the FeFET device, changing the voltage pulse, directly after the write operation, to a non-zero bias voltage level with a bias polarity that is opposite to the write polarity, at the gate electrode with reference to the source electrode for a delay time to reduce neutralization of a trap state associated with the write operation of the FeFET device, and changing the voltage pulse, after the delay time, to a read voltage level as a read operation to the FeFET device to determine the state of the FeFET device established during the write operation.
    Type: Application
    Filed: December 8, 2022
    Publication date: June 15, 2023
    Inventors: ASIF KHAN, WINSTON CHERN, YUAN-CHUN LUO, NUJHAT TASNEEM, ZHENG WANG, SHIMENG YU
  • Publication number: 20190131314
    Abstract: A non-volatile memory device (VeSFlash) comprises a vertical slit field effect transistor (VeSFET) device comprising a semiconductor portion defining a source end, a drain end, and a slit portion between the source end and the drain end. The VeSFlash non-volatile memory device further comprises at least one floating gate coupled to a side of the slit portion through an insulating layer. The floating gate is coupled to a contact through a second insulating layer. The VeSFlash non-volatile memory device further comprises either another floating gate or an independent control gate. In the case of comprising a control gate coupled to a side wall of the slit portion through a third insulating layer, and the control gate further coupled to a second contact, it is configured to accommodate an access signal, and the floating gate configured to accommodate a data signal.
    Type: Application
    Filed: October 31, 2018
    Publication date: May 2, 2019
    Inventors: Jordan Chesin, Winston Chern, Richard H. Morrison, JR., Amy Duwel, John M. Muza
  • Publication number: 20190131188
    Abstract: A method of fabricating a semiconductor device comprises forming, within a single process flow on a silicon on insulator (SOI) wafer, at least one of an n channel, digital VeSFET, a p channel, digital VeSFET, an n channel, analog VeSFET and a p channel, analog VeSFET. The method may further comprise forming, on the SOI wafer, at least one of a JFET, a BJT and a LT-MOM capacitor. The method may further comprise forming the n channel, digital VeSFET, a p channel, digital VeSFET, an n channel, analog VeSFET, and a p channel, analog VeSFET, according to a periodic design based on a unit circle. The method may comprise modifying a design of the semiconductor node, according to a three-dimensional architecture, to form a modified semiconductor node, and fabricating the modified semiconductor node on substrate, along with at least one other node of a different node type.
    Type: Application
    Filed: November 1, 2018
    Publication date: May 2, 2019
    Inventors: Jordan Chesin, Winston Chern, Richard H. Morrison, JR., John M. Muza
  • Patent number: 8980656
    Abstract: A new method for forming an array of high aspect ratio semiconductor nanostructures entails positioning a surface of a stamp comprising a solid electrolyte in opposition to a conductive film disposed on a semiconductor substrate. The surface of the stamp includes a pattern of relief features in contact with the conductive film so as to define a film-stamp interface. A flux of metal ions is generated across the film-stamp interface, and a pattern of recessed features complementary to the pattern of relief features is created in the conductive film. The recessed features extend through an entire thickness of the conductive film to expose the underlying semiconductor substrate and define a conductive pattern on the substrate. The stamp is removed, and material immediately below the conductive pattern is selectively removed from the substrate. Features are formed in the semiconductor substrate having a length-to-width aspect ratio of at least about 5:1.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: March 17, 2015
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Xiuling Li, Nicholas X. Fang, Placid M. Ferreira, Winston Chern, Ik Su Chun, Keng Hao Hsu
  • Patent number: 8951430
    Abstract: Methods of metal assisted chemical etching III-V semiconductors are provided. The methods can include providing an electrically conductive film pattern disposed on a semiconductor substrate comprising a III-V semiconductor. At least a portion of the III-V semiconductor immediately below the conductive film pattern may be selectively removed by immersing the electrically conductive film pattern and the semiconductor substrate into an etchant solution comprising an acid and an oxidizing agent having an oxidation potential less than an oxidation potential of hydrogen peroxide. Such methods can form high aspect ratio semiconductor nanostructures.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 10, 2015
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Xiuling Li, Matthew T. Dejarld, Jae Cheol Shin, Winston Chern
  • Publication number: 20130052762
    Abstract: A new method for forming an array of high aspect ratio semiconductor nanostructures entails positioning a surface of a stamp comprising a solid electrolyte in opposition to a conductive film disposed on a semiconductor substrate. The surface of the stamp includes a pattern of relief features in contact with the conductive film so as to define a film-stamp interface. A flux of metal ions is generated across the film-stamp interface, and a pattern of recessed features complementary to the pattern of relief features is created in the conductive film. The recessed features extend through an entire thickness of the conductive film to expose the underlying semiconductor substrate and define a conductive pattern on the substrate. The stamp is removed, and material immediately below the conductive pattern is selectively removed from the substrate. Features are formed in the semiconductor substrate having a length-to-width aspect ratio of at least about 5:1.
    Type: Application
    Filed: October 14, 2010
    Publication date: February 28, 2013
    Inventors: Xiuling Li, Nicholas X. Fang, Placid M. Ferreira, Winston Chern, Ik Su Chun, Keng Hao Hsu
  • Patent number: RE48407
    Abstract: Methods of metal assisted chemical etching III-V semiconductors are provided. The methods can include providing an electrically conductive film pattern disposed on a semiconductor substrate comprising a III-V semiconductor. At least a portion of the III-V semiconductor immediately below the conductive film pattern may be selectively removed by immersing the electrically conductive film pattern and the semiconductor substrate into an etchant solution comprising an acid and an oxidizing agent having an oxidation potential less than an oxidation potential of hydrogen peroxide. Such methods can form high aspect ratio semiconductor nanostructures.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: January 26, 2021
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Xiuling Li, Matthew T. Dejarld, Parsian Katal Mohseni, Jae Cheol Shin, Winston Chern