Patents by Inventor Wolfram Geiger

Wolfram Geiger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11936221
    Abstract: The invention relates to a battery system, particularly for using in a local electrical grid, comprising: at least one battery module (1); an output terminal (2) which is electrically connected to the battery module (1) and used to charge and/or discharge the battery module (1) from and/or into the local electrical grid; a disconnector (3) which is arranged between the battery module (1) and at least one pole (21, 22) of the output terminal (2) and is designed to break the electrical connection between the battery module (1) and the at least one pole (21, 22) of the output terminal (2), when open; and a first signal circuit (41) which is designed to generate the triggering of the disconnector (3) in the event of a faulty state detected by the battery module (1) in such a way as to interrupt the electrical connection between the battery module (1) and the at least one pole (21, 22) of the output terminal (2).
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: March 19, 2024
    Assignee: Sonnen GmbH
    Inventors: Michael Geiger, Wolfram Hennemann
  • Patent number: 11719539
    Abstract: A micromechanical component for a yaw rate sensor. The component includes a substrate having a substrate surface, a first rotor mass developed in one piece, which is able to be set into a first torsional vibration about a first axis of rotation aligned perpendicular to the substrate surface, and at least one first component of the micromechanical component. The first rotor mass is connected to the at least one first component via at least one first spring element. The at least one first spring element extends through a lateral concavity on the first rotor mass in each case and is connected to a recessed edge region of the first rotor mass. A yaw rate sensor and a production method for a micromechanical component for a yaw rate sensor, are also described.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: August 8, 2023
    Assignee: ROBERT BOSCH GMBH
    Inventors: Matthias Kuehnel, Nils Felix Kuhlmann, Robert Maul, Rolf Scheben, Steffen Markisch, Thorsten Balslink, Wolfram Geiger
  • Publication number: 20230095336
    Abstract: A micromechanical component for a rotation rate sensor. The micromechanical component includes two rotor masses, mirror symmetrical with respect to a first plane of symmetry aligned perpendicularly to a substrate surface and passing through the center of the two rotor masses, which may be set in rotational vibrating motion about rotational axes aligned perpendicularly to the substrate surface, and four seismic masses, mirror symmetrical with respect to the first plane of symmetry, deflectable in parallel to the first plane of symmetry using the two rotor masses set in their respective rotational vibrating motion. The first rotor mass and a first pair of the four seismic masses connected thereto are mirror symmetrical to the second rotor mass and to a second pair of the four seismic masses connected thereto with respect to a second plane of symmetry aligned perpendicularly to the substrate surface and to the first plane of symmetry.
    Type: Application
    Filed: April 14, 2021
    Publication date: March 30, 2023
    Inventors: Matthias Kuehnel, Nils Felix Kuhlmann, Robert Maul, Rolf Scheben, Steffen Markisch, Thorsten Balslink, Wolfram Geiger
  • Patent number: 11467012
    Abstract: Recalibrating a micromechanical sensor. The sensor is assigned a signal processing device for correcting the sensor signal on the basis of at least one previously determined initial trim value that is selected such that, given a defined sensor excitation, a production-related deviation of the sensor signal from a target sensor signal is compensated. The method for recalibrating the sensor includes: applying a defined electrical test excitation signal to the sensor structure, acquiring the corresponding sensor response signal, ascertaining a trim correction value for the at least one initial trim value on the basis of a previously determined relation between the sensor response signal and the trim correction value, and determining at least one current trim value for correcting the sensor signal, the determination of the at least one current trim value taking place on the basis of the at least one initial trim value and the ascertained trim correction value.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: October 11, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Andrea Visconti, Matthias Meier, Ruslan Khalilyulin, Thomas Zebrowski, Wolfram Geiger
  • Publication number: 20220057423
    Abstract: A sensor system including a chip arrangement, the chip arrangement including a sensor and an acceleration sensor, and the sensor system including a processor circuit. The processor circuit is configured in such a way that: one or multiple temperature-dependent variables and/or properties of the sensor are ascertained, and an offset of a signal of the acceleration sensor induced by a temperature gradient is corrected with the aid of the one or the multiple ascertained temperature-dependent variables and/or properties of the sensor.
    Type: Application
    Filed: August 4, 2021
    Publication date: February 24, 2022
    Inventors: Wolfram Geiger, Istvan Kadar-Nemet, Johannes Classen
  • Publication number: 20210333103
    Abstract: A micromechanical component for a yaw rate sensor. The component includes a substrate having a substrate surface, a first rotor mass developed in one piece, which is able to be set into a first torsional vibration about a first axis of rotation aligned perpendicular to the substrate surface, and at least one first component of the micromechanical component. The first rotor mass is connected to the at least one first component via at least one first spring element. The at least one first spring element extends through a lateral concavity on the first rotor mass in each case and is connected to a recessed edge region of the first rotor mass. A yaw rate sensor and a production method for a micromechanical component for a yaw rate sensor, are also described.
    Type: Application
    Filed: April 20, 2021
    Publication date: October 28, 2021
    Inventors: Matthias Kuehnel, Nils Felix Kuhlmann, Robert Maul, Rolf Scheben, Steffen Markisch, Thorsten Balslink, Wolfram Geiger
  • Publication number: 20210033437
    Abstract: Recalibrating a micromechanical sensor. The sensor is assigned a signal processing device for correcting the sensor signal on the basis of at least one previously determined initial trim value that is selected such that, given a defined sensor excitation, a production-related deviation of the sensor signal from a target sensor signal is compensated. The method for recalibrating the sensor includes: applying a defined electrical test excitation signal to the sensor structure, acquiring the corresponding sensor response signal, ascertaining a trim correction value for the at least one initial trim value on the basis of a previously determined relation between the sensor response signal and the trim correction value, and determining at least one current trim value for correcting the sensor signal, the determination of the at least one current trim value taking place on the basis of the at least one initial trim value and the ascertained trim correction value.
    Type: Application
    Filed: March 7, 2019
    Publication date: February 4, 2021
    Inventors: Andrea Visconti, Matthias Meier, Ruslan Khalilyulin, Thomas Zebrowski, Wolfram Geiger
  • Patent number: 10260901
    Abstract: A method for optimizing the switch-on time of a Coriolis gyroscope (1) having a mass system (100) which can be excited to an excitation oscillation of the Coriolis gyroscope (1) parallel to a first axis (x), wherein a deflection of the mass system on account of a Coriolis force along a second axis (y) which is provided perpendicular to the first axis (x) can be verified using an output signal from the Coriolis gyroscope, comprises determining the amplitude (A) of the excitation oscillation of the Coriolis gyroscope at a defined time, determining the output signal (S) from the Coriolis gyroscope at the defined time, and generating a normalized output signal (S0) from the Coriolis gyroscope by multiplying the determined output signal (S) by the quotient of the amplitude (A0) of the excitation oscillation of the Coriolis gyroscope in the steady state and the determined amplitude (A).
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: April 16, 2019
    Assignee: NORTHROP GRUMMAN LITEF GmbH
    Inventor: Wolfram Geiger
  • Patent number: 10000376
    Abstract: A component is produced by creating a first layer composite that includes a first electrically conductive substrate and having a trench filled with an insulating material by creating a second layer composite that includes the first layer composite and a structure layer. The structure layer includes an active structure and is electrically conductive at least in a first region that adjoins a first surface of the first substrate and includes in the first region of the first substrate a first electrically conductive contact face on a second surface of the first substrate, which is located opposite the first surface. The first region of the first substrate is electrically insulated laterally from other regions of the first substrate by the trench.
    Type: Grant
    Filed: February 11, 2015
    Date of Patent: June 19, 2018
    Assignee: Northrop Grumman LITEF GmbH
    Inventor: Wolfram Geiger
  • Patent number: 9783410
    Abstract: In a method for producing a component, a first layer composite is first produced, comprising a structured layer and a trench filled with an insulating material. The structured layer is electrically conductive at least in a first region. The trench filled with an insulating material extends outwards from a first surface of the structured layer and is arranged in the first region of the structured layer. The first surface of the structured layer faces a first surface of the first layer composite. The method additionally has the step of producing a second layer composite, which has a first depression in a first surface of the second layer composite, and the step of connecting the first layer composite to the second layer composite. The first surface of the first layer composite adjoins the first surface of the second layer composite at least in some regions, said filled trench being arranged within the lateral position of the first depression.
    Type: Grant
    Filed: February 11, 2015
    Date of Patent: October 10, 2017
    Assignee: NORTHROP GRUMMAN LITEF GMBH
    Inventors: Wolfram Geiger, Uwe Breng, Martin Hafen, Guenter Spahlinger
  • Patent number: 9709596
    Abstract: The invention relates to an acceleration sensor, comprising a substrate having a substrate surface and a sample mass that is movable relative to the substrate in a first direction (x) parallel to the substrate surface. The sample mass has a comb-like electrode that is movable together with the sample mass and has a plurality of teeth, which extend in the first direction (x). The acceleration sensor further comprises a counter-electrode fixedly connected to the substrate, which counter-electrode has a fixed comb-like electrode and wherein said fixed comb-like electrode has a plurality of teeth which extend in a direction opposite to the first direction (x). The teeth of the movable comb-like electrode engage with the teeth of the fixed comb-like electrode. The acceleration sensor further comprises a shielding electrode fixedly connected to the substrate and which is suitable for increasing a pneumatic damping of the sample mass during a deflection movement of the sample mass.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: July 18, 2017
    Assignee: Northrop Grumman LITEF GmbH
    Inventors: Wolfram Geiger, Julian Bartholomeyczik, Peter Leinfelder
  • Publication number: 20170097245
    Abstract: A method for optimizing the switch-on time of a Coriolis gyroscope (1) having a mass system (100) which can be excited to an excitation oscillation of the Coriolis gyroscope (1) parallel to a first axis (x), wherein a deflection of the mass system on account of a Coriolis force along a second axis (y) which is provided perpendicular to the first axis (x) can be verified using an output signal from the Coriolis gyroscope, comprises determining the amplitude (A) of the excitation oscillation of the Coriolis gyroscope at a defined dine, determining the output signal (S) from the Coriolis gyroscope at the defined time, and generating a normalized output signal (S0) from the Coriolis gyroscope by multiplying the determined output signal (S) by the quotient of the amplitude (A0) of the excitation oscillation of the Coriolis gyroscope in the steady state and the determined amplitude (A).
    Type: Application
    Filed: January 27, 2015
    Publication date: April 6, 2017
    Inventor: WOLFRAM GEIGER
  • Publication number: 20160368761
    Abstract: In a method for producing a component, a first layer composite is first produced, comprising a structured layer and a trench filled with an insulating material. The structured layer is electrically conductive at least in a first region. The trench filled with an insulating material extends outwards from a first surface of the structured layer and is arranged in the first region of the structured layer. The first surface of the structured layer faces a first surface of the first layer composite. The method additionally has the step of producing a second layer composite, which has a first depression in a first surface of the second layer composite, and the step of connecting the first layer composite to the second layer composite. The first surface of the first layer composite adjoins the first surface of the second layer composite at least in some regions, said filled trench being arranged within the lateral position of the first depression.
    Type: Application
    Filed: February 11, 2015
    Publication date: December 22, 2016
    Inventors: WOLFRAM GEIGER, UWE BRENG, MARTIN HAFEN, GUENTER SPAHLINGER
  • Publication number: 20160362297
    Abstract: In the method for producing a component, firstly a first layer composite is created which comprises a first substrate made of a conductive material and at least one trench formed therein and filled with insulating material, wherein a first region of the first substrate, at least on a first surface of the first substrate, is electrically insulated laterally from other regions of the first substrate by the trench. A second layer composite is then created, which comprises the first layer composite and a structure layer. The structure layer comprises an active structure of the component and is electrically conductive at least in a first region which in a first region of the first substrate adjoins the first surface of the first substrate and is connected thereto in an electrically conductive manner.
    Type: Application
    Filed: February 11, 2015
    Publication date: December 15, 2016
    Inventor: WOLFRAM GEIGER
  • Publication number: 20160069928
    Abstract: The invention relates to an acceleration sensor, comprising a substrate having a substrate surface and a sample mass that is movable relative to the substrate in a first direction (x) parallel to the substrate surface. The sample mass has a comb-like electrode that is movable together with the sample mass and has a plurality of teeth, which extend in the first direction (x). The acceleration sensor further comprises a counter-electrode fixedly connected to the substrate, which counter-electrode has a fixed comb-like electrode and wherein said fixed comb-like electrode has a plurality of teeth which extend in a direction opposite to the first direction (x). The teeth of the movable comb-like electrode engage with the teeth of the fixed comb-like electrode. The acceleration sensor further comprises a shielding electrode fixedly connected to the substrate and which is suitable for increasing a pneumatic damping of the sample mass during a deflection movement of the sample mass.
    Type: Application
    Filed: March 27, 2014
    Publication date: March 10, 2016
    Inventors: Wolfram Geiger, Julian Bartholomeyczik, Peter Leinfelder
  • Patent number: 9052196
    Abstract: A Coriolis gyroscope comprises a mass system that can be excited to perform vibrations parallel to a first axis, whereby a deflection of the mass system due to a Coriolis force along a second axis perpendicular to the first axis is detectable. At least one first correction unit and at least one second correction unit, which each comprise a plurality of stationary correction electrodes and moving correction electrodes whereby the stationary correction electrodes extend in the direction of the first axis and are firmly connected to the substrate by corresponding anchor structures, and the moving correction electrodes are provided as a part of the mass system. A method for reducing the quadrature bias of a Coriolis gyroscope of this type comprises applying at least temporarily constant corrective voltages to the correction units.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: June 9, 2015
    Assignee: Northrop Grumman LITEF GmbH
    Inventors: Wolfram Geiger, Peter Leinfelder
  • Publication number: 20130055787
    Abstract: A Coriolis gyroscope comprises a mass system that can be excited to perform vibrations parallel to a first axis, whereby a deflection of the mass system due to a Coriolis force along a second axis perpendicular to the first axis is detectable. At least one first correction unit and at least one second correction unit, which each comprise a plurality of stationary correction electrodes and moving correction electrodes whereby the stationary correction electrodes extend in the direction of the first axis and are firmly connected to the substrate by corresponding anchor structures, and the moving correction electrodes are provided as a part of the mass system. A method for reducing the quadrature bias of a Coriolis gyroscope of this type comprises applying at least temporarily constant corrective voltages to the correction units.
    Type: Application
    Filed: February 1, 2011
    Publication date: March 7, 2013
    Inventors: Wolfram Geiger, Peter Leinfelder
  • Patent number: 8365595
    Abstract: A rotation rate sensor comprises a substrate and two structures which move relative to the substrate on a design plane (x-y), with the two moving structures being coupled to form a coupled structure such that the coupled structure has a first oscillation mode with antiphase deflections of the moving structures in a first direction (x) on the design plane (x-y) as excitation mode. The coupled structure has a second oscillation mode as a detection mode which is excited by Coriolis accelerations when the first oscillation mode is excited and on rotation about a sensitive axis (z) of the rotation rate sensor. The sensitive axis is at right angles to the design plane (x-y), and the coupled structure is designed such that, subject to optimal preconditions, it does not have any oscillation mode which can be excited by linear accelerations of the rotation rate sensor in a direction parallel to the second axis.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: February 5, 2013
    Assignee: Northrop Grumman LITEF GmbH
    Inventors: Wolfram Geiger, Peter Leinfelder, Guenter Spahlinger, Julian Bartholomeyczik
  • Patent number: 8342023
    Abstract: A Coriolis gyro having an arrangement which comprises a substrate, at least two individual structures and spring elements. The spring elements couple the individual structures to the substrate and to one another. Force transmitters and taps are provided. The arrangement has at least one excitation mode which can be excited by the force transmitters and at least one detection mode which can be measured by the taps. The excitation mode and the detection mode are closed, as a result of which no disturbance excitations of the excitation mode and of the detection mode can be caused by linear accelerations and/or vibrations if there is no need to take account of manufacturing tolerances.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: January 1, 2013
    Assignee: Northrop Grumman LITEF GmbH
    Inventor: Wolfram Geiger
  • Patent number: 8258590
    Abstract: A method for producing a component, especially a micromechanical, micro-electro-mechanical or micro-opto-electro-mechanical component, as well as such a component which has an active structure that is embedded in a layer structure. Strip conductor bridges are formed by etching first and second depressions having a first and second, different etching depth into a covering layer of a first layer combination that additionally encompasses a substrate and an insulation layer. The deeper depression is used for insulating the strip conductor bridge while the shallower depression provides a moving space for the active structure with the moving space being bridged by the strip conductor bridge.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: September 4, 2012
    Assignee: Northrop Grumman LITEF GmbH
    Inventors: Wolfram Geiger, Uwe Breng