Patents by Inventor Wolfram Pernice

Wolfram Pernice has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230342596
    Abstract: An optical matrix multiplication unit for an optoelectronic system can be used to form an artificial neural network, having N input waveguides, M output waveguides and a plurality of matrix multiplication unit cells for signal processing of optical signals of one each of the N input waveguides and for transferring the processed signals into one each of the M output waveguides, wherein each of the matrix multiplication unit cells is allocated to one of the input waveguides and one of the output waveguides and undertakes a unique allocation between said two allocated waveguides. Each of the matrix multiplication unit cells has, for signal processing and signal transfer, a directional coupler, having an electrooptical modulator for transmission control of the directional coupler, interconnected between the allocated input waveguide and the allocated output waveguide.
    Type: Application
    Filed: September 14, 2021
    Publication date: October 26, 2023
    Inventors: Wolfram PERNICE, Johannes FELDMANN
  • Patent number: 11585693
    Abstract: The invention relates to a single photon detector device for detecting an optical signal comprising an optical fiber and at least one nanowire, wherein the optical fiber comprises a core area and a cladding area and is designed to conduct the optical signal along an optical axis, wherein, with respect to the optical axis, a first area of the optical fiber is an entrance area for the optical signal and a second area of the optical fiber is a detector area, and wherein the nanowire becomes superconducting at a predetermined temperature and is designed in the superconducting state to generate an output signal as a function of the optical signal. It is provided that in the detector area of the optical fiber the nanowire extends essentially along the optical axis of the optical fiber. A single photon detector device is thus provided which has a simple structure, a high efficiency, a high detection rate and a high spectral bandwidth.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: February 21, 2023
    Assignee: WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER
    Inventors: Nicolai Walter, Wolfram Pernice, Simone Ferrari
  • Patent number: 11556312
    Abstract: A co-processor for performing a matrix multiplication of an input matrix with a data matrix in one step may be provided. The co-processor receives input signals for the input matrix as optical signals. A plurality of photonic memory elements is arranged at crossing points of an optical waveguide crossbar array. The plurality of memory elements is configured to store values of the data matrix. Input signals are connected to input lines of the optical waveguide crossbar array. Output lines of the optical waveguide crossbar array represent a dot-product between a respective column of the optical waveguide crossbar array and the received input signals, and values of elements of the input matrix to be multiplied with the data matrix correspond to light intensities received at input lines of the respective photonic memory elements. Additionally, different wavelengths are used for each column of the input matrix optical signals.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: January 17, 2023
    Assignees: International Business Machines Corporation, Oxford University Innovation Limited, University of Exeter, University of Muenster
    Inventors: Abu Sebastian, Manuel Le Gallo-Bourdeau, Christopher David Wright, Nathan Youngblood, Harish Bhaskaran, Xuan Li, Wolfram Pernice, Johannes Feldmann
  • Publication number: 20220012013
    Abstract: A co-processor for performing a matrix multiplication of an input matrix with a data matrix in one step may be provided. The co-processor receives input signals for the input matrix as optical signals. A plurality of photonic memory elements is arranged at crossing points of an optical waveguide crossbar array. The plurality of memory elements is configured to store values of the data matrix. Input signals are connected to input lines of the optical waveguide crossbar array. Output lines of the optical waveguide crossbar array represent a dot-product between a respective column of the optical waveguide crossbar array and the received input signals, and values of elements of the input matrix to be multiplied with the data matrix correspond to light intensities received at input lines of the respective photonic memory elements. Additionally, different wavelengths are used for each column of the input matrix optical signals.
    Type: Application
    Filed: July 10, 2020
    Publication date: January 13, 2022
    Inventors: Abu Sebastian, Manuel Le Gallo-Bourdeau, Christopher David Wright, Nathan Youngblood, Harish Bhaskaran, Xuan Li, Wolfram Pernice, Johannes Feldmann
  • Publication number: 20210381884
    Abstract: The invention relates to a single photon detector device for detecting an optical signal comprising an optical fiber and at least one nanowire, wherein the optical fiber comprises a core area and a cladding area and is designed to conduct the optical signal along an optical axis, wherein, with respect to the optical axis, a first area of the optical fiber is an entrance area for the optical signal and a second area of the optical fiber is a detector area, and wherein the nanowire becomes superconducting at a predetermined temperature and is designed in the superconducting state to generate an output signal as a function of the optical signal. It is provided that in the detector area of the optical fiber the nanowire extends essentially along the optical axis of the optical fiber. A single photon detector device is thus provided which has a simple structure, a high efficiency, a high detection rate and a high spectral bandwidth.
    Type: Application
    Filed: December 5, 2019
    Publication date: December 9, 2021
    Inventors: Nicolai WALTER, Wolfram PERNICE, Simone FERRARI
  • Patent number: 11099456
    Abstract: A photonic device (100) comprising: an optical waveguide (101), and a modulating element (102) that is evanescently coupled to the waveguide (101); wherein the modulating element (102) modifies a transmission, reflection or absorption characteristic of the waveguide (101) dependant on its state, and the state of the modulating element (102) is switchable by an optical switching signal (125) carried by the waveguide (101), or by an electrical signal that heats the modulating element (102).
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: August 24, 2021
    Assignee: OXFORD UNIVERSITY INNOVATION LTD.
    Inventors: Carlos Rios, Harish Bhaskaran, Wolfram Pernice, Matthias Stegmaier
  • Publication number: 20200081318
    Abstract: A photonic device (100) comprising: an optical waveguide (101), and a modulating element (102) that is evanescently coupled to the waveguide (101); wherein the modulating element (102) modifies a transmission, reflection or absorption characteristic of the waveguide (101) dependant on its state, and the state of the modulating element (102) is switchable by an optical switching signal (125) carried by the waveguide (101), or by an electrical signal that heats the modulating element (102).
    Type: Application
    Filed: August 23, 2019
    Publication date: March 12, 2020
    Inventors: Carlos RIOS, Harish BHASKARAN, Wolfram PERNICE, Matthias STEGMAIER
  • Publication number: 20180267386
    Abstract: A photonic device (100) comprising: an optical waveguide (101), and a modulating element (102) that is evanescently coupled to the waveguide (101); wherein the modulating element (102) modifies a transmission, reflection or absorption characteristic of the waveguide (101) dependant on its state, and the state of the modulating element (102) is switchable by an optical switching signal (125) carried by the waveguide (101), or by an electrical signal that heats the modulating element (102).
    Type: Application
    Filed: September 15, 2016
    Publication date: September 20, 2018
    Inventors: Carlos RIOS, Harish BHASKARAN, Wolfram PERNICE, Matthias STEGMAIER
  • Patent number: 9678278
    Abstract: The present invention is related to an integrated optical circuit, in particular, to an optical-field writable array, as well as to methods for its manufacturing and reconfiguring. The integrated optical circuit comprises at least one nanophotonic device and at least one photonic wire, wherein the nanophotonic device comprises a substrate equipped with at least one reception for at least one external connector, wherein the reception is coupled to at least one connector waveguide, and at least one set of nano-optic components, wherein the nano-optic component is one of a nanophotonic waveguide or a nanophotonic component, wherein the nano-photonic component is nano-optically coupled to at least one nanophotonic waveguide, wherein at least one of the nanophotonic waveguides is selectively coupleable to at least one of the connector waveguides, wherein the photonic wire connects at least one of the nanophotonic waveguides to at least one of the connector waveguides.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: June 13, 2017
    Assignee: Karlsruher Institut für Technologie
    Inventors: Matthias Blaicher, Wolfram Pernice, Martin Wegener
  • Patent number: 9500519
    Abstract: The present invention provides a device and system for high-efficiency and low-noise detection of single photons within the visible and infrared spectrum. In certain embodiments, the device of the invention can be integrated within photonic circuits to provide on-chip photon detection. The device comprises a traveling wave design comprising a waveguide layer and a superconducting nanowire atop of the waveguide.
    Type: Grant
    Filed: December 3, 2013
    Date of Patent: November 22, 2016
    Assignee: Yale University
    Inventors: Hongxing Tang, Wolfram Pernice, Carsten Schuck
  • Patent number: 9470955
    Abstract: A nanophotonic device includes at least two waveguides located on top of a transparent substrate, which form an intersection point at which a part of a first waveguide simultaneously constitutes a part of a second waveguide. A nanoscale element located on top of the intersection point so that it partially or completely covers the intersection point is switchable between two different states, which differ by a refractive index value. The nanophotonic device is operated by injecting at least two optical pulses into the waveguides. Intensity of the optical pulses is selected so that a superposition of the optical pulses switches the nanoscale element into a desired state. Also disclosed is a nanophotonic matrix array in which parallel waveguides form nanophotonic devices. The nanophotonic matrix array may be used as a spatial light modulator (SLM), as an optical mirror, as an optical absorber, or as a tunable optical grating array.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: October 18, 2016
    Assignee: Karlsruher Institut für Technologie
    Inventors: Wolfram Pernice, Harish Bhaskaran
  • Patent number: 9341779
    Abstract: Devices which operate on gradient optical forces, in particular, nanoscale mechanical devices which are actuable by gradient optical forces. Such a device comprises a waveguide and a dielectric body, with at least a portion of the waveguide separated from the dielectric body at a distance which permits evanescent coupling of an optical mode within the waveguide to the dielectric body. This results in an optical force which acts on the waveguide and which can be exploited in a variety of devices on a nano scale, including all-optical switches, photonic transistors, tuneable couplers, optical attenuators and tuneable phase shifters.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: May 17, 2016
    Assignee: Yale University
    Inventors: Hongxing Tang, Mo Li, Wolfram Pernice, Chi Xiong
  • Publication number: 20150378183
    Abstract: A nanophotonic device includes at least two waveguides located on top of a transparent substrate, which form an intersection point at which a part of a first waveguide simultaneously constitutes a part of a second waveguide. A nanoscale element located on top of the intersection point so that it partially or completely covers the intersection point is switchable between two different states, which differ by a refractive index value. The nanophotonic device is operated by injecting at least two optical pulses into the waveguides. Intensity of the optical pulses is selected so that a superposition of the optical pulses switches the nanoscale element into a desired state. Also disclosed is a nanophotonic matrix array in which parallel waveguides form nanophotonic devices. The nanophotonic matrix array may be used as a spatial light modulator (SLM), as an optical mirror, as an optical absorber, or as a tunable optical grating array.
    Type: Application
    Filed: June 17, 2015
    Publication date: December 31, 2015
    Applicant: Karlsruher Institut für Technologie
    Inventors: Wolfram PERNICE, Harish Bhaskaran
  • Publication number: 20150362688
    Abstract: A nanophotonic device comprises at least two segments, wherein each segment comprises a grating coupler for receiving incident light and a superconducting stripe located on a substrate, wherein the grating coupler is optically coupled to a superconducting stripe of a superconducting single-photon detector. The nanophotonic device further comprises at least two further segments which do not comprise a superconducting stripe, wherein the grating couplers in the further segments constitute an optical reference port for aligning an optical fiber array to the nanophotonic device, wherein an optical coupling is provided between at least two of the optical reference ports. Additionally, a single-photon camera comprises a housing, wherein the housing comprises a single-photon detector chip with at least one nanophotonic device, a method for manufacturing the nanophotonic device, and a method for aligning an optical fiber array to the nanophotonic device.
    Type: Application
    Filed: June 10, 2015
    Publication date: December 17, 2015
    Applicant: Karlsruher lnstitut für Technologie
    Inventor: Wolfram PERNICE
  • Publication number: 20150309260
    Abstract: The present invention is related to an integrated optical circuit, in particular, to an optical-field writable array, as well as to methods for its manufacturing and reconfiguring. The integrated optical circuit comprises at least one nanophotonic device and at least one photonic wire, wherein the nanophotonic device comprises a substrate equipped with at least one reception for at least one external connector, wherein the reception is coupled to at least one connector waveguide, and at least one set of nano-optic components, wherein the nano-optic component is one of a nanophotonic waveguide or a nanophotonic component, wherein the nano-photonic component is nano-optically coupled to at least one nanophotonic waveguide, wherein at least one of the nanophotonic waveguides is selectively coupleable to at least one of the connector waveguides, wherein the photonic wire connects at least one of the nanophotonic waveguides to at least one of the connector waveguides.
    Type: Application
    Filed: April 28, 2015
    Publication date: October 29, 2015
    Applicant: Karlsruher Institut für Technologie
    Inventors: Matthias BLAICHER, Wolfram PERNICE, Martin WEGENER
  • Publication number: 20140299751
    Abstract: The present invention provides a device and system for high-efficiency and low-noise detection of single photons within the visible and infrared spectrum. In certain embodiments, the device of the invention can be integrated within photonic circuits to provide on-chip photon detection. The device comprises a traveling wave design comprising a waveguide layer and a superconducting nanowire atop of the waveguide.
    Type: Application
    Filed: December 3, 2013
    Publication date: October 9, 2014
    Applicant: YALE UNIVERSITY
    Inventors: Hongxing Tang, Wolfram Pernice, Carsten Schuck
  • Patent number: 8639074
    Abstract: The present invention relates to devices which operate on gradient optical forces, in particular, nanoscale mechanical devices which are actuable by gradient optical forces. Such a device comprises a waveguide and a dielectric body, with at least a portion of the waveguide separated from the dielectric body at a distance which permits evanescent coupling of an optical mode within the waveguide to the dielectric body. This results in an optical force which acts on the waveguide and which can be exploited in a variety of devices on a nano scale, including all-optical switches, photonic transistors, tuneable couplers, optical attenuators and tuneable phase shifters. The waveguide can also comprise a gap such that two cantilever bridges are formed.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: January 28, 2014
    Assignee: Yale University
    Inventors: Hongxing Tang, Mo Li, Wolfram Pernice, Chi Xiong
  • Publication number: 20130322817
    Abstract: Devices which operate on gradient optical forces, in particular, nanoscale mechanical devices which are actuable by gradient optical forces. Such a device comprises a waveguide and a dielectric body, with at least a portion of the waveguide separated from the dielectric body at a distance which permits evanescent coupling of an optical mode within the waveguide to the dielectric body. This results in an optical force which acts on the waveguide and which can be exploited in a variety of devices on a nano scale, including all-optical switches, photonic transistors, tuneable couplers, optical attenuators and tuneable phase shifters.
    Type: Application
    Filed: August 6, 2013
    Publication date: December 5, 2013
    Applicant: Yale University
    Inventors: Hongxing Tang, Mo Li, Wolfram Pernice, Chi Xiong
  • Publication number: 20110103733
    Abstract: The present invention relates to devices which operate on gradient optical forces, in particular, nanoscale mechanical devices which are actuable by gradient optical forces. Such a device comprises a waveguide and a dielectric body, with at least a portion of the waveguide separated from the dielectric body at a distance which permits evanescent coupling of an optical mode within the waveguide to the dielectric body. This results in an optical force which acts on the waveguide and which can be exploited in a variety of devices on a nano scale, including all-optical switches, photonic transistors, tuneable couplers, optical attenuators and tuneable phase shifters. The waveguide can also comprise a gap such that two cantilever bridges are formed.
    Type: Application
    Filed: April 9, 2009
    Publication date: May 5, 2011
    Inventors: Hongxing Tang, Mo Li, Wolfram Pernice, Chi Xiong