Patents by Inventor Wonmo Kang

Wonmo Kang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230282388
    Abstract: A composite wire material may comprise a core wire comprising copper (Cu). The core wire material may comprise a first layer on a circumferential surface of the core wire, where the first layer comprises graphene. The composite wire material may comprise a second layer on a circumferential surface of the first layer, where the second layer comprises nickel (Ni).
    Type: Application
    Filed: February 15, 2023
    Publication date: September 7, 2023
    Inventors: Hamzeh Kashani, Wonmo Kang
  • Patent number: 11702622
    Abstract: A system and method for studying cell injury mechanisms by applying biologically relevant mechanical impact to in vitro cell culture are disclosed. This approach is for maintaining consistent in vitro conditions during experiments, accommodating multiple cell populations, and monitoring each in real-time while achieving amplitude and time scale of input acceleration that mimic blunt injury cases. These multiplexed, environmental control capabilities enable characterizing the relationships between mechanical impact and cell injury in multivariate biological systems.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: July 18, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Marc P. Raphael, Wonmo Kang
  • Patent number: 11609084
    Abstract: A system for mechanical testing a specimen includes a 3D printed mechanical testing fixture; a linear actuator having an axis of movement; a controller configured to control the linear actuator; two cameras; a data-acquisition system configured to acquire data from the linear actuator, the controller, and the two cameras; and the specimen. The specimen is marked in two locations with tracking markers to provide indication to the data acquisition system via at least one camera of movement and change in length of the specimen. The fixture includes force-sensing beams extending perpendicular to the axis of force.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: March 21, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Wonmo Kang, Christopher Rudolf
  • Publication number: 20210262783
    Abstract: A system for mechanical testing a specimen includes a 3D printed mechanical testing fixture; a linear actuator having an axis of movement; a controller configured to control the linear actuator; two cameras; a data-acquisition system configured to acquire data from the linear actuator, the controller, and the two cameras; and the specimen. The specimen is marked in two locations with tracking markers to provide indication to the data acquisition system via at least one camera of movement and change in length of the specimen.
    Type: Application
    Filed: February 24, 2021
    Publication date: August 26, 2021
    Inventors: Wonmo Kang, Christopher Rudolf
  • Publication number: 20210054325
    Abstract: A system and method for studying cell injury mechanisms by applying biologically relevant mechanical impact to in vitro cell culture are disclosed. This approach is for maintaining consistent in vitro conditions during experiments, accommodating multiple cell populations, and monitoring each in real-time while achieving amplitude and time scale of input acceleration that mimic blunt injury cases. These multiplexed, environmental control capabilities enable characterizing the relationships between mechanical impact and cell injury in multivariate biological systems.
    Type: Application
    Filed: August 21, 2020
    Publication date: February 25, 2021
    Inventors: Marc P. Raphael, Wonmo Kang
  • Patent number: 9019512
    Abstract: According to example embodiments of the invention, a microscale testing stage comprises a frame having first and second opposing ends and first and second side beams, at least one deformable force sensor beam, a first longitudinal beam having a free end, a second longitudinal beam having a facing free end, a support structure, and a pair of slots disposed at each of the free ends. In certain embodiments, a layer of a conductive material defines first and second conductive paths and an open circuit that can be closed by the specimen across the gap. In other embodiments, the stage is formed of a high melting temperature material.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: April 28, 2015
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Wonmo Kang, M. Taher A. Saif
  • Patent number: 8351053
    Abstract: According to example embodiments of the invention, a microscale testing stage comprises a frame having first and second opposing ends and first and second side beams, at least one deformable force sensor beam, a first longitudinal beam having a free end, a second longitudinal beam having a facing free end, a support structure, and a pair of slots disposed at each of the free ends. In certain embodiments, a separately fabricated microscale or nanoscale specimen comprises a central gauge length portion of a material to be tested, and first and second hinges providing a self-aligning mechanism for uniaxial loading. In other embodiments, a layer of a conductive material defines first and second conductive paths and an open circuit that can be closed by the specimen across the gap. In other embodiments, the stage is formed of a high melting temperature material.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: January 8, 2013
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Wonmo Kang, M. Taher A. Saif
  • Publication number: 20110317157
    Abstract: According to example embodiments of the invention, a microscale testing stage comprises a frame having first and second opposing ends and first and second side beams, at least one deformable force sensor beam, a first longitudinal beam having a free end, a second longitudinal beam having a facing free end, a support structure, and a pair of slots disposed at each of the free ends. In certain embodiments, a separately fabricated microscale or nanoscale specimen comprises a central gauge length portion of a material to be tested, and first and second hinges providing a self-aligning mechanism for uniaxial loading. In other embodiments, a layer of a conductive material defines first and second conductive paths and an open circuit that can be closed by the specimen across the gap. In other embodiments, the stage is formed of a high melting temperature material.
    Type: Application
    Filed: June 25, 2010
    Publication date: December 29, 2011
    Applicant: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Wonmo Kang, M. Taher A. Saif