Patents by Inventor Woo-Gon Kim

Woo-Gon Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11996846
    Abstract: A master latch circuit, including a first p-type transistor, a first n-type transistor, and a second n-type transistor connected in series; a first node connected to the first p-type transistor and the first n-type transistor, and a NAND circuit configured to receive a signal of the first node and a clock signal and output a result of a NAND operation to a second node, wherein a gate of the first p-type transistor is connected to the second node.
    Type: Grant
    Filed: July 11, 2022
    Date of Patent: May 28, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Byoung Gon Kang, Woo Kyu Kim, Tae Jun Yoo, Dal Hee Lee
  • Publication number: 20240128109
    Abstract: An apparatus for manufacturing a semiconductor device includes a substrate transfer unit configured to transfer a substrate, a rail unit including a driving rail extending in a first direction that the substrate transfer unit moves and a stopper on a side of the driving rail in a second direction crossing the first direction, and a lifting unit configured to move in the first direction and a third direction perpendicular to the first and second directions to remove the substrate transfer unit from the rail unit, wherein the lifting unit is configured to contact the stopper to move the stopper from a closed state to an open state.
    Type: Application
    Filed: October 11, 2023
    Publication date: April 18, 2024
    Inventors: Ji Hun Kim, Youn Gon Oh, Woo-Ram Moon, Sang Hyuk Park, Jong Hun Lee, Kyu-Sik Jeong
  • Patent number: 9598750
    Abstract: Disclosed herein is a high Cr Ferritic/Martensitic steel comprising 0.04 to 0.13% by weight of carbon, 0.03 to 0.07% by weight of silicon, 0.40 to 0.50% by weight of manganese, 0.40 to 0.50% by weight of nickel, 8.5 to 9.5% by weight of chromium, 0.45 to 0.55% by weight of molybdenum, 0.10 to 0.25% by weight of vanadium, 0.02 to 0.10% by weight of tantalum, 0.21 to 0.25% by weight of niobium, 1.5 to 3.0% by weight of tungsten, 0.015 to 0.025% by weight of nitrogen, 0.01 to 0.02% by weight of boron and iron balance. By regulating the contents of alloying elements such as nitrogen, born, the high Cr Ferritic/Martensitic steel with superior tensile strength and creep resistance is provided, and can be effectively used as an in-core component material for sodium-cooled fast reactor (SFR).
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: March 21, 2017
    Assignees: KOREA ATOMIC ENERGY RESEARCH INSTITUTE, KOREA HYDRO AND NUCLEAR POWER CO., LTD
    Inventors: Sung Ho Kim, Jong Hyuk Baek, Tae Kyu Kim, Woo Gon Kim, Jun Hwan Kim, Chang Hee Han, Chan Bock Lee, Yeong-Il Kim, Dohee Hahn
  • Patent number: 8444782
    Abstract: Provided is a method of manufacturing a high strength ferritic/martensitic steel. The method includes melting a ferritic/martensitic steel, hot-working the melted ferritic/martensitic steel, normalizing the hot-worked ferritic/martensitic steel at a temperature of about 1050° C. to about 1200° C., tempering the ferritic/martensitic steel at a temperature of about 600° C. or less, and leaving MX precipitates while preventing a M23C6 precipitate from being precipitated, and cold-working and thermal-treating the ferritic/martensitic steel in a multistage fashion, and precipitating M23C6 precipitates. Through the above described configuration, the high strength ferritic/martensitic steel that prevents a ductility from being deteriorated even in a high-temperature environment may be manufactured.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: May 21, 2013
    Assignee: Korea Atomic Energy Research Institute
    Inventors: Woo-Gon Kim, Chan-Bock Lee, Jong-Hyuk Baek, Do-Hee Hahn, Sung-Ho Kim, Chang-Hee Han, Tae-Kyu Kim, Jun-Hwan Kim
  • Publication number: 20120106693
    Abstract: Disclosed herein is a high Cr Ferritic/Martensitic steel comprising 0.04 to 0.13% by weight of carbon, 0.03 to 0.07% by weight of silicon, 0.40 to 0.50% by weight of manganese, 0.40 to 0.50% by weight of nickel, 8.5 to 9.5% by weight of chromium, 0.45 to 0.55% by weight of molybdenum, 0.10 to 0.25% by weight of vanadium, 0.02 to 0.10% by weight of tantalum, 0.21 to 0.25% by weight of niobium, 1.5 to 3.0% by weight of tungsten, 0.015 to 0.025% by weight of nitrogen, 0.01 to 0.02% by weight of boron and iron balance. By regulating the contents of alloying elements such as nitrogen, born, the high Cr Ferritic/Martensitic steel with to superior tensile strength and creep resistance is provided, and can be effectively used as an in-core component material for sodium-cooled fast reactor (SFR).
    Type: Application
    Filed: October 25, 2011
    Publication date: May 3, 2012
    Applicants: KOREA HYDRO AND NUCLEAR POWER CO., LTD, KOREA ATOMIC ENERGY RESEARCH INSTITUTE
    Inventors: Sung Ho Kim, Jong Hyuk Baek, Tae Kyu Kim, Woo Gon Kim, Jun Hwan Kim, Chang Hee Han, Chan Bock Lee, Yeong-II Kim, Dohee Hahn
  • Patent number: 8155260
    Abstract: Disclosed herein are a nuclear fuel rod for fast reactors, which includes an oxide coating layer formed on the inner surface of a cladding, and a manufacturing method thereof. The nuclear fuel rod for fast reactors, which includes the oxide coating layer formed on the inner surface of the cladding, can increase the maximum permissible burnup and maximum permissible temperature of the metallic fuel slug for fast reactors so as to prolong the its lifecycle in the fast reactors, thus increasing economic efficiency. Also, the fuel rod is manufactured in a simpler manner compared to the existing method, in which a metal liner is formed, and the disclosed method enables the cladding of the fuel rod to be manufactured in an easy and cost-effective way.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: April 10, 2012
    Assignees: Korea Atomic Energy Research Institute, Korea Hydro & Nuclear Power Co., Ltd.
    Inventors: Chan Bock Lee, Jong-Hyuk Baek, Byoung-Oon Lee, Jin-Sik Cheon, Ho Jin Ryu, Jun Hwan Kim, Sung Ho Kim, Tae-Kyu Kim, Woo-Gon Kim, Chong-Tak Lee, Ki-Hwan Kim, Young-Mo Ko, Yoon-Myeong Woo, Seok-Jin Oh, Dohee Hahn
  • Publication number: 20110162764
    Abstract: High-Cr ferritic/martensitic steels having an improved tensile strength and creep resistance are provided, which includes 0.04˜0.13 weight % of carbon, 0.03˜0.07 weight % of silicon, 0.40˜0.50 weight % of manganese, 0.40˜0.50 weight % of nickel, 8.5˜9.5 weight % of chromium, 0.45˜0.55 weight % of molybdenum, 0.10˜0.25 weight % of vanadium, 0.02˜0.10 weight % of tantalum, 0.15˜0.25 weight % of niobium, 1.5˜3.0 weight % of tungsten, 0.05˜0.12 weight % of nitrogen, 0.004˜0.008 weight % of boron, and optionally, 0.002˜0.010 weight % of phosphorus or 0.01˜0.08 weight % of zirconium, and iron balance. By regulating the contents of alloying elements such as niobium, tantalum, tungsten, nitrogen, boron, zirconium, carbon, the high-Cr ferritic/martensitic steels with superior tensile strength and creep resistance are provided, and can be effectively used as an in-core structural material for Generation IV sodium-cooled fast reactor (SFR) which is used under high temperature and high irradiation conditions.
    Type: Application
    Filed: January 5, 2011
    Publication date: July 7, 2011
    Applicants: KOREA ATOMIC ENERGY RESEARCH INSTITUTE, KOREA HYDRO AND NUCLEAR POWER CO., LTD.
    Inventors: Sung Ho Kim, Jong Hyuk Baek, Tae Kyu Kim, Woo Gon Kim, Jun Hwan Kim, Chang Hee Han, Chan Bock Lee, Yeong-Il Kim, Dohee Hahn
  • Publication number: 20100108207
    Abstract: Provided is a method of manufacturing a high strength ferritic/martensitic steel. The method includes melting a ferritic/martensitic steel, hot-working the melted ferritic/martensitic steel, normalizing the hot-worked ferritic/martensitic steel at a temperature of about 1050° C. to about 1200° C., tempering the ferritic/martensitic steel at a temperature of about 600° C. or less, and leaving MX precipitates while preventing a M23C6 precipitate from being precipitated, and cold-working and thermal-treating the ferritic/martensitic steel in a multistage fashion, and precipitating M23C6 precipitates. Through the above described configuration, the high strength ferritic/martensitic steel that prevents a ductility from being deteriorated even in a high-temperature environment may be manufactured.
    Type: Application
    Filed: November 4, 2009
    Publication date: May 6, 2010
    Inventors: Woo-Gon Kim, Chan-Bock Lee, Jong-Hyuk Baek, Do-Hee Hahn, Sung-Ho Kim, Chang-Hee Han, Tae-Kyu Kim, Jun-Hwan Kim
  • Publication number: 20090141851
    Abstract: Disclosed herein are a nuclear fuel rod for fast reactors, which includes an oxide coating layer formed on the inner surface of a cladding, and a manufacturing method thereof. The nuclear fuel rod for fast reactors, which includes the oxide coating layer formed on the inner surface of the cladding, can increase the maximum permissible burnup and maximum permissible temperature of the metallic fuel slug for fast reactors so as to prolong the its lifecycle in the fast reactors, thus increasing economic efficiency. Also, the fuel rod is manufactured in a simpler manner compared to the existing method, in which a metal liner is formed, and the disclosed method enables the cladding of the fuel rod to be manufactured in an easy and cost-effective way.
    Type: Application
    Filed: April 28, 2008
    Publication date: June 4, 2009
    Applicants: Korea Atomic Energy Research Institute, Korea Hydro and Nuclear Power Co., Ltd.
    Inventors: Chan Bock Lee, Jong-Hyuk Baek, Byoung-Oon Lee, Jin-Sik Cheon, Ho Jin Ryu, Jun Hwan Kim, Sung Ho Kim, Tae-Kyu Kim, Woo-Gon Kim, Chong-Tak Lee, Ki-Hwan Kim, Young-Mo Ko, Yoon-Myeong Woo, Seok-Jin Oh, Dohee Hahn