Patents by Inventor X. M. Henry Huang

X. M. Henry Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170200769
    Abstract: The present disclosure is directed toward carbon based diodes, carbon based resistive change memory elements, resistive change memory having resistive change memory elements and carbon based diodes, methods of making carbon based diodes, methods of making resistive change memory elements having carbon based diodes, and methods of making resistive change memory having resistive change memory elements having carbons based diodes. The carbon based diodes can be any suitable type of diode that can be formed using carbon allotropes, such as semiconducting single wall carbon nanotubes (s-SWCNT), semiconducting Buckminsterfullerenes (such as C60 Buckyballs), or semiconducting graphitic layers (layered graphene). The carbon based diodes can be pn junction diodes, Schottky diodes, other any other type of diode formed using a carbon allotrope. The carbon based diodes can be placed at any level of integration in a three dimensional (3D) electronic device such as integrated with components or wiring layers.
    Type: Application
    Filed: December 20, 2016
    Publication date: July 13, 2017
    Inventors: Claude L. Bertin, C. Rinn Cleavelin, Thomas Rueckes, X.M. Henry Huang
  • Patent number: 9601498
    Abstract: A two terminal memory device includes first and second conductive terminals and a nanotube article. The article has at least one nanotube, and overlaps at least a portion of each of the first and second terminals. The device also includes stimulus circuitry in electrical communication with at least one of the first and second terminals. The circuit is capable of applying first and second electrical stimuli to at least one of the first and second terminal(s) to change the relative resistance of the device between the first and second terminals between a relatively high resistance and a relatively low resistance. The relatively high resistance between the first and second terminals corresponds to a first state of the device, and the relatively low resistance between the first and second terminals corresponds to a second state of the device.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: March 21, 2017
    Assignee: Nantero Inc.
    Inventors: Claude L. Bertin, Mitchell Meinhold, Steven L. Konsek, Thomas Rueckes, Max Strasburg, Frank Guo, X. M. Henry Huang, Ramesh Sivarajan
  • Publication number: 20160314820
    Abstract: Under one aspect, a covered nanotube switch includes: (a) a nanotube element including an unaligned plurality of nanotubes, the nanotube element having a top surface, a bottom surface, and side surfaces; (b) first and second terminals in contact with the nanotube element, wherein the first terminal is disposed on and substantially covers the entire top surface of the nanotube element, and wherein the second terminal contacts at least a portion of the bottom surface of the nanotube element; and (c) control circuitry capable of applying electrical stimulus to the first and second terminals. The nanotube element can switch between a plurality of electronic states in response to a corresponding plurality of electrical stimuli applied by the control circuitry to the first and second terminals. For each different electronic state, the nanotube element provides an electrical pathway of different resistance between the first and second terminals.
    Type: Application
    Filed: June 29, 2016
    Publication date: October 27, 2016
    Inventors: Claude L. BERTIN, X.M. Henry Huang, Thomas Rueckes, Ramesh Sivarajan
  • Publication number: 20160315122
    Abstract: The present disclosure is directed toward carbon based diodes, carbon based resistive change memory elements, resistive change memory having resistive change memory elements and carbon based diodes, methods of making carbon based diodes, methods of making resistive change memory elements having carbon based diodes, and methods of making resistive change memory having resistive change memory elements having carbons based diodes. The carbon based diodes can be any suitable type of diode that can be formed using carbon allotropes, such as semiconducting single wall carbon nanotubes (s-SWCNT), semiconducting Buckminsterfullerenes (such as C60 Buckyballs), or semiconducting graphitic layers (layered graphene). The carbon based diodes can be pn junction diodes, Schottky diodes, other any other type of diode formed using a carbon allotrope. The carbon based diodes can be placed at any level of integration in a three dimensional (3D) electronic device such as integrated with components or wiring layers.
    Type: Application
    Filed: June 29, 2016
    Publication date: October 27, 2016
    Inventors: Claude L. BERTIN, C. Rinn CLEAVELIN, Thomas RUECKES, X.M. Henry HUANG, H. Montgomery MANNING
  • Patent number: 9406349
    Abstract: Under one aspect, a covered nanotube switch includes: (a) a nanotube element including an unaligned plurality of nanotubes, the nanotube element having a top surface, a bottom surface, and side surfaces; (b) first and second terminals in contact with the nanotube element, wherein the first terminal is disposed on and substantially covers the entire top surface of the nanotube element, and wherein the second terminal contacts at least a portion of the bottom surface of the nanotube element; and (c) control circuitry capable of applying electrical stimulus to the first and second terminals. The nanotube element can switch between a plurality of electronic states in response to a corresponding plurality of electrical stimuli applied by the control circuitry to the first and second terminals. For each different electronic state, the nanotube element provides an electrical pathway of different resistance between the first and second terminals.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: August 2, 2016
    Assignee: Nantero Inc.
    Inventors: Claude L. Bertin, X. M. Henry Huang, Thomas Rueckes, Ramesh Sivarajan
  • Patent number: 9390790
    Abstract: The present disclosure is directed toward carbon based diodes, carbon based resistive change memory elements, resistive change memory having resistive change memory elements and carbon based diodes, methods of making carbon based diodes, methods of making resistive change memory elements having carbon based diodes, and methods of making resistive change memory having resistive change memory elements having carbons based diodes. The carbon based diodes can be any suitable type of diode that can be formed using carbon allotropes, such as semiconducting single wall carbon nanotubes (s-SWCNT), semiconducting Buckminsterfullerenes (such as C60 Buckyballs), or semiconducting graphitic layers (layered graphene). The carbon based diodes can be pn junction diodes, Schottky diodes, other any other type of diode formed using a carbon allotrope. The carbon based diodes can be placed at any level of integration in a three dimensional (3D) electronic device such as integrated with components or wiring layers.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: July 12, 2016
    Assignee: Nantero Inc.
    Inventors: Claude L. Bertin, C. Rinn Cleavelin, Thomas Rueckes, X. M. Henry Huang, H. Montgomery Manning
  • Patent number: 9196615
    Abstract: Under one aspect, a nanotube diode includes: a cathode formed of a semiconductor material; and an anode formed of nanotubes. The cathode and anode are in fixed and direct physical contact, and are constructed and arranged such that sufficient electrical stimulus applied to the cathode and the anode creates a conductive pathway between the cathode and the anode. In some embodiments, the anode includes a non-woven nanotube fabric having a plurality of unaligned nanotubes. The non-woven nanotube fabric may have a thickness, e.g., of 0.5 to 20 nm. Or, the non-woven nanotube fabric may include a block of nanotubes. The nanotubes may include metallic nanotubes and semiconducting nanotubes, and the cathode may include an n-type semiconductor material. A Schottky barrier can form between the n-type semiconductor material and the metallic nanotubes and/or a PN junction can form between the n-type semiconductor material and the semiconducting nanotubes.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: November 24, 2015
    Assignee: Nantero Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, X. M. Henry Huang, Ramesh Sivarajan, Eliodor G. Ghenciu, Steven L. Konsek, Mitchell Meinhold
  • Publication number: 20140241023
    Abstract: Under one aspect, a covered nanotube switch includes: (a) a nanotube element including an unaligned plurality of nanotubes, the nanotube element having a top surface, a bottom surface, and side surfaces; (b) first and second terminals in contact with the nanotube element, wherein the first terminal is disposed on and substantially covers the entire top surface of the nanotube element, and wherein the second terminal contacts at least a portion of the bottom surface of the nanotube element; and (c) control circuitry capable of applying electrical stimulus to the first and second terminals. The nanotube element can switch between a plurality of electronic states in response to a corresponding plurality of electrical stimuli applied by the control circuitry to the first and second terminals. For each different electronic state, the nanotube element provides an electrical pathway of different resistance between the first and second terminals.
    Type: Application
    Filed: May 2, 2014
    Publication date: August 28, 2014
    Inventors: Claude L. Bertin, X. M. Henry Huang, Thomas Rueckes, Ramesh Sivarajan
  • Patent number: 8809917
    Abstract: Under one aspect, a covered nanotube switch includes: (a) a nanotube element including an unaligned plurality of nanotubes, the nanotube element having a top surface, a bottom surface, and side surfaces; (b) first and second terminals in contact with the nanotube element, wherein the first terminal is disposed on and substantially covers the entire top surface of the nanotube element, and wherein the second terminal contacts at least a portion of the bottom surface of the nanotube element; and (c) control circuitry capable of applying electrical stimulus to the first and second terminals. The nanotube element can switch between a plurality of electronic states in response to a corresponding plurality of electrical stimuli applied by the control circuitry to the first and second terminals. For each different electronic state, the nanotube element provides an electrical pathway of different resistance between the first and second terminals.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: August 19, 2014
    Assignee: Nantero Inc.
    Inventors: Claude L. Bertin, X. M. Henry Huang, Thomas Rueckes, Ramesh Sivarajan
  • Publication number: 20140166959
    Abstract: The present disclosure is directed toward carbon based diodes, carbon based resistive change memory elements, resistive change memory having resistive change memory elements and carbon based diodes, methods of making carbon based diodes, methods of making resistive change memory elements having carbon based diodes, and methods of making resistive change memory having resistive change memory elements having carbons based diodes. The carbon based diodes can be any suitable type of diode that can be formed using carbon allotropes, such as semiconducting single wall carbon nanotubes (s-SWCNT), semiconducting Buckminsterfullerenes (such as C60 Buckyballs), or semiconducting graphitic layers (layered graphene). The carbon based diodes can be pn junction diodes, Schottky diodes, other any other type of diode formed using a carbon allotrope. The carbon based diodes can be placed at any level of integration in a three dimensional (3D) electronic device such as integrated with components or wiring layers.
    Type: Application
    Filed: December 17, 2012
    Publication date: June 19, 2014
    Applicant: NANTERO INC.
    Inventors: Claude L. Bertin, C. Rinn Cleavelin, Thomas Rueckes, X. M. Henry Huang, H. Montgomery Manning
  • Patent number: 8580586
    Abstract: A memory array includes a plurality of memory cells, each of which receives a bit line, a first word line, and a second word line. Each memory cell includes a cell selection circuit, which allows the memory cell to be selected. Each memory cell also includes a two-terminal switching device, which includes first and second conductive terminals in electrical communication with a nanotube article. The memory array also includes a memory operation circuit, which is operably coupled to the bit line, the first word line, and the second word line of each cell. The circuit can select the cell by activating an appropriate line, and can apply appropriate electrical stimuli to an appropriate line to reprogrammably change the relative resistance of the nanotube article between the first and second terminals. The relative resistance corresponds to an informational state of the memory cell.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: November 12, 2013
    Assignee: Nantero Inc.
    Inventors: Claude L. Bertin, Frank Guo, Thomas Rueckes, Steven L. Konsek, Mitchell Meinhold, Max Strasburg, Ramesh Sivarajan, X. M. Henry Huang
  • Patent number: 8513768
    Abstract: Under one aspect, a non-volatile nanotube diode device includes first and second terminals; a semiconductor element including a cathode and an anode, and capable of forming a conductive pathway between the cathode and anode in response to electrical stimulus applied to the first conductive terminal; and a nanotube switching element including a nanotube fabric article in electrical communication with the semiconductive element, the nanotube fabric article disposed between and capable of forming a conductive pathway between the semiconductor element and the second terminal, wherein electrical stimuli on the first and second terminals causes a plurality of logic states.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: August 20, 2013
    Assignee: Nantero Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, X. M. Henry Huang, Ramesh Sivarajan, Eliodor G. Ghenciu, Steven L. Konsek, Mitchell Meinhold, Jonathan W. Ward, Darren K. Brock
  • Patent number: 8217490
    Abstract: Under one aspect, a non-volatile nanotube switch includes a first terminal; a nanotube block including a multilayer nanotube fabric, at least a portion of which is positioned over and in contact with at least a portion of the first terminal; a second terminal, at least a portion of which is positioned over and in contact with at least a portion of the nanotube block, wherein the nanotube block is constructed and arranged to prevent direct physical and electrical contact between the first and second terminals; and control circuitry capable of applying electrical stimulus to the first and second terminals. The nanotube block can switch between a plurality of electronic states in response to a plurality of electrical stimuli applied by the control circuitry to the first and second terminals. For each different electronic state, the nanotube block provides an electrical pathway of different resistance between the first and second terminals.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: July 10, 2012
    Assignee: Nantero Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, X. M. Henry Huang, Ramesh Sivarajan, Eliodor G. Ghenciu, Steven L. Konsek, Mitchell Meinhold, Jonathan W. Ward, Darren K. Brock
  • Publication number: 20110220859
    Abstract: A two terminal memory device includes first and second conductive terminals and a nanotube article. The article has at least one nanotube, and overlaps at least a portion of each of the first and second terminals. The device also includes stimulus circuitry in electrical communication with at least one of the first and second terminals. The circuit is capable of applying first and second electrical stimuli to at least one of the first and second terminal(s) to change the relative resistance of the device between the first and second terminals between a relatively high resistance and a relatively low resistance. The relatively high resistance between the first and second terminals corresponds to a first state of the device, and the relatively low resistance between the first and second terminals corresponds to a second state of the device.
    Type: Application
    Filed: May 23, 2011
    Publication date: September 15, 2011
    Applicant: NANTERO, INC.
    Inventors: Claude L. BERTIN, Mitchell MEINHOLD, Steven L. KONSEK, Thomas RUECKES, Max STRASBURG, Frank GUO, X. M. Henry HUANG, Ramesh SIVARAJAN
  • Patent number: 8013363
    Abstract: Under one aspect, a nonvolatile nanotube diode includes: a substrate; a semiconductor element disposed over the substrate, the semiconductor element having an anode and a cathode and capable of forming an electrically conductive pathway between the anode and the cathode; a nanotube switching element disposed over the semiconductor element, the nanotube switching element including a conductive contact and a nanotube fabric element capable of a plurality of resistance states; and a conductive terminal disposed in spaced relation to the conductive contact, wherein the nanotube fabric element is interposed between and in electrical communication with the conductive contact and the conductive contact is in electrical communication with the cathode, and wherein in response to electrical stimuli applied to the anode and the conductive terminal, the nonvolatile nanotube diode is capable of forming an electrically conductive pathway between the anode and the conductive terminal.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: September 6, 2011
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, X. M. Henry Huang, Ramesh Sivarajan, Eliodor G. Ghenciu, Steven L. Konsek, Mitchell Meinhold, Jonathan W. Ward, Darren K. Brock
  • Patent number: 7986546
    Abstract: A non-volatile memory cell includes a volatile storage device that stores a corresponding logic state in response to electrical stimulus; and a shadow memory device coupled to the volatile storage device. The shadow memory device receives and stores the corresponding logic state in response to electrical stimulus. The shadow memory device includes a non-volatile nanotube switch that stores the corresponding state of the shadow device.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: July 26, 2011
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Frank Guo, Thomas Rueckes, Steven L. Konsek, Mitchell Meinhold, Max Strasburg, Ramesh Sivarajan, X. M. Henry Huang
  • Patent number: 7948054
    Abstract: A two terminal memory device includes first and second conductive terminals and a nanotube article. The article has at least one nanotube, and overlaps at least a portion of each of the first and second terminals. The device also includes stimulus circuitry in electrical communication with at least one of the first and second terminals. The circuit is capable of applying first and second electrical stimuli to at least one of the first and second terminal(s) to change the relative resistance of the device between the first and second terminals between a relatively high resistance and a relatively low resistance. The relatively high resistance between the first and second terminals corresponds to a first state of the device, and the relatively low resistance between the first and second terminals corresponds to a second state of the device.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: May 24, 2011
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Mitchell Meinhold, Steven L. Konsek, Thomas Rueckes, Max Strasburg, Frank Guo, X. M. Henry Huang, Ramesh Sivarajan
  • Publication number: 20110044091
    Abstract: A two terminal memory device includes first and second conductive terminals and a nanotube article. The article has at least one nanotube, and overlaps at least a portion of each of the first and second terminals. The device also includes stimulus circuitry in electrical communication with at least one of the first and second terminals. The circuit is capable of applying first and second electrical stimuli to at least one of the first and second terminal(s) to change the relative resistance of the device between the first and second terminals between a relatively high resistance and a relatively low resistance. The relatively high resistance between the first and second terminals corresponds to a first state of the device, and the relatively low resistance between the first and second terminals corresponds to a second state of the device.
    Type: Application
    Filed: August 23, 2010
    Publication date: February 24, 2011
    Applicant: NANTERO, INC.
    Inventors: Claude L. BERTIN, Mitchell MEINHOLD, Steven L. KONSEK, Thomas RUECKES, Max STRASBURG, Frank GUO, X. M. Henry HUANG, Ramesh SIVARAJAN
  • Patent number: 7835170
    Abstract: Under one aspect, a covered nanotube switch includes: (a) a nanotube element including an unaligned plurality of nanotubes, the nanotube element having a top surface, a bottom surface, and side surfaces; (b) first and second terminals in contact with the nanotube element, wherein the first terminal is disposed on and substantially covers the entire top surface of the nanotube element, and wherein the second terminal contacts at least a portion of the bottom surface of the nanotube element; and (c) control circuitry capable of applying electrical stimulus to the first and second terminals. The nanotube element can switch between a plurality of electronic states in response to a corresponding plurality of electrical stimuli applied by the control circuitry to the first and second terminals. For each different electronic state, the nanotube element provides an electrical pathway of different resistance between the first and second terminals.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: November 16, 2010
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, X. M. Henry Huang, Thomas Rueckes, Ramesh Sivarajan
  • Patent number: 7782650
    Abstract: Under one aspect, a memory array includes word lines; bit lines; memory cells; and a memory operation circuit. Each memory cell responds to electrical stimulus on a word line and on a bit line and includes: a two-terminal non-volatile nanotube switching device having first and second terminals, a semiconductor diode element, and a nanotube fabric article capable of multiple resistance states. The semiconductor diode and nanotube article are between and in electrical communication with the first and second terminals, which are coupled to the word line bit line respectively. The operation circuit selects cells by activating bit and/or word lines, detects a resistance state of the nanotube fabric article of a selected memory cell, and adjusts electrical stimulus applied to the cell to controllably induce a selected resistance state in the nanotube fabric article. The selected resistance state corresponds to an informational state of the memory cell.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: August 24, 2010
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, X. M. Henry Huang, Ramesh Sivarajan, Eliodor G. Ghenciu, Steven L. Konsek, Mitchell Meinhold, Jonathan W. Ward, Darren K. Brock