Patents by Inventor Xi Chu

Xi Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050239294
    Abstract: A tool for depositing multilayer coatings onto a substrate. In one configuration, the tool includes a includes an in-line organic material deposition station operating under at least one of a pressure or temperature controlled environment. In another, it further is of a hybrid design that incorporates both in-line and cluster tool features. In this latter configuration, at least one of the deposition stations is configured to deposit an inorganic layer, while at least one other deposition station is configured to deposit an organic layer. The tool is particularly well-suited to depositing multilayer coatings onto discrete substrates, as well as to encapsulating environmentally-sensitive devices placed on the flexible substrate.
    Type: Application
    Filed: April 22, 2005
    Publication date: October 27, 2005
    Inventors: Martin Rosenblum, Xi Chu, Lorenza Moro, Kenneth Nelson, Paul Burrows, Mark Gross, Mac Zumhoff, Peter Martin, Charles Bonham, Gordon Graff
  • Publication number: 20040253168
    Abstract: This patent discloses a system and method of producing nanostructured carbon and carbon monoxide-free hydrogen through the decomposition of hydrocarbons in a spouted bed reactor. The process is precisely controlled in such a way that the carbon particles generated in reaction has a unique nanostructure so their surfaces can act as catalytic sites for the decomposition of hydrocarbons. The process produces hydrogen stream containing no carbon monoxide, and The CO-free hydrogen is ideal fuel for fuel cells (especially the PEM) and many industrial chemical syntheses. The generated nanostructured carbon can be used as catalyst for the processing of hydrocarbons such as hydrogenation, dehydrogenation and partial oxidation of hydrocarbon chemicals. In addition, the nanostructured carbon produced can be used as electrode material for electrochemical energy conversation and storage and industrial electrochemical processes, fuel for the direct carbon fuel cell, and fillers of medical implants and components.
    Type: Application
    Filed: April 23, 2004
    Publication date: December 16, 2004
    Inventor: Xi Chu
  • Publication number: 20040122515
    Abstract: The present invention relates to noval design of mechanical valve prostheses and manufacturing methods. A series of prosthetic valves with novel design and a unique manufacturing approach are disclosed. These devices possess unique designs and are made of nanostructurely engineered biomaterial. In addition, a novel manufacturing approach will be used to produce these devices because the convention technique is incapable of fabricating the devices due to the small size, design requirements and material properties restrain. Furthermore, it provides the convenience and thus low cost in manufacturing. The devices are particularly but not exclusively useful in human circulation system to restore the normal functions.
    Type: Application
    Filed: November 20, 2003
    Publication date: June 24, 2004
    Inventor: Xi Chu
  • Publication number: 20030215032
    Abstract: An analog signal gain control circuit(ASGC) for a digital radio HomePlug orthogonal frequency division multiplexing (OFDM) receiver includes a digital variable gain amplifier (DVGA) to control the gain of a received signal to achieve a desired signal amplitude to match a dynamic range of an analog-to-digital converter (ADC), an inverse scaling stage controlled to inverse-scale the signal output by the ADC, and a two-stage fast attack and slow decay filter that outputs control signals to the DVGA and to the inverse scaling stage. The fast attack and slow decay filter rapidly responds to an increase in signal amplitude and slowly decays the amplitude of the control signal in response to a decrease in input signal amplitude.
    Type: Application
    Filed: May 15, 2002
    Publication date: November 20, 2003
    Applicant: Cogency Semiconductor Inc.
    Inventors: Brian James Langlais, Akrum Elkhazin, John Fanson, Bradley Robert Lynch, Xi Chu
  • Patent number: 6095160
    Abstract: A method for cleaning the surface of magnetic disks prior to the deposition of a metal layer on the magnetic disk. The method includes the steps of first, placing a magnetic disk into a magnetron assisted DC plasma chamber. The plasma chamber includes a vacuum chamber, one or more targets, one or more magnets, a noble gas source, a target power supply, and a DC bias power supply. Next, a noble gas, for example argon, is introduced into the vacuum chamber via the noble gas source, and a DC glow discharge is generated in the vacuum chamber by supplying power to the one or more targets using the target power supply. Finally, the magnetic disk is etched when a negative voltage is applied to the magnetic disk using the DC bias power supply.
    Type: Grant
    Filed: April 6, 1998
    Date of Patent: August 1, 2000
    Inventor: Xi Chu
  • Patent number: 5874166
    Abstract: A treated mesophase carbon fiber is disclosed having a high density of exposed edges on the fiber surface, and a method of making such a treated fiber. A carbon electrode is also described which is constructed from such treated mesophase carbon fibers. The resulting electrode, formed from such treated flexible carbon fibers, is characterized by a high density of active sites formed from such exposed edges, low corrosion, and good mechanical strength, and may be fabricated into various shapes. The treated mesophase carbon fibers of the invention are formed by first loading the surface of the mesophase carbon fiber with catalytic metal particles to form catalytic etch sites on a hard carbon shell of the fiber. The carbon fiber is then subject to an etch step wherein portions of the hard carbon shell or skin are selectively removed adjacent the catalytic metal particles adhering to the carbon shell.
    Type: Grant
    Filed: August 22, 1996
    Date of Patent: February 23, 1999
    Assignee: Regents of the University of California
    Inventors: Xi Chu, Kimio Kinoshita
  • Patent number: 5783295
    Abstract: The present invention provides a coated article comprising a substrate that can be non-crystalline or crystalline such as a polycrystalline engineering material, having advantageous mechanical properties and a superlattice-type protective composite coating on the substrate. The composite coating comprises a plurality of vapor deposited, ion bombarded, polycrystalline layers of different adjacent compositions formed one atop the other in lamellar manner. The polycrystalline layers have sufficiently thin individual layer thicknesses (e.g. not exceeding about 150 nanometers) and sufficiently distinct and different compositions proximate their interfaces despite being ion bombarded as to constitute superlattice layers that exhibit a collective hardness exceeding the hardness of any individual layer material in homogenous or bulk form.
    Type: Grant
    Filed: July 5, 1996
    Date of Patent: July 21, 1998
    Assignee: Northwestern University
    Inventors: Scott A. Barnett, William D. Sproul, Ming-show Wong, Xi Chu
  • Patent number: 5776615
    Abstract: A composite material having high hardness comprises a carbon nitrogen compound, such as CN.sub.x where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN.sub.x. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45-55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating.
    Type: Grant
    Filed: February 14, 1995
    Date of Patent: July 7, 1998
    Assignee: Northwestern University
    Inventors: Ming-Show Wong, Dong Li, Yip-Wah Chung, William D. Sproul, Xi Chu, Scott A. Barnett
  • Patent number: 5725913
    Abstract: A composite material having high hardness comprises a carbon nitrogen compound, such as CN.sub.x where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN.sub.x. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45-55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating.
    Type: Grant
    Filed: October 23, 1996
    Date of Patent: March 10, 1998
    Assignee: Northwestern University
    Inventors: Ming-Show Wong, Dong Li, Yin-Wah Chung, William D. Sproul, Xi Chu, Scott A. Barnett