Patents by Inventor Xiao-Ming He

Xiao-Ming He has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070026232
    Abstract: Transparent conductive films for flat panel displays and methods for producing them are disclosed. In general, a method according to the present invention comprises: (1) providing a flexible plastic substrate; (2) depositing a multi-layered conductive metallic film on the flexible plastic substrate by a thin-film deposition technique to form a composite film, the multi-layered conductive metallic film comprising two layers of an alloy selected from the group consisting of indium cerium oxide (InCeO) and indium tin oxide (ITO) surrounding a layer of an alloy of silver, palladium, and copper (Ag/Pd/Cu); and (3) collecting the composite film in continuous rolls. Typically, the thin-film deposition technique is DC magnetron sputtering. Another aspect of the invention is a composite film produced by a method according to the present invention.
    Type: Application
    Filed: November 1, 2002
    Publication date: February 1, 2007
    Inventors: Yukihiko Sasaki, Xiao-Ming He
  • Publication number: 20070009732
    Abstract: A method for labeling fabrics, such as fabric garments, and a heat-transfer label (311) well-suited for use in said method. In one embodiment, the heat-transfer label (311) comprises (i) a support portion (313), the support portion (313) comprising a carrier (315) and a release layer (317); (ii) a wax layer (319), the wax layer overcoating the release layer (317); and (iii) a transfer portion (321), the transfer portion (321) comprising an adhesive layer (323) printed directly onto the wax layer (319) and an ink design layer (325) printed directly onto the adhesive layer (323). Each of the adhesive layer (323) and the ink design layer includes a non-cross-linked PVC resin. The ink design layer may be screen printed onto the adhesive layer (323) or may be printed onto the adhesive layer (323) using thermal transfer printing, ink jet printing or laser printing.
    Type: Application
    Filed: December 2, 2003
    Publication date: January 11, 2007
    Inventors: Kuolih Tsai, Dong-Tsai Hseih, Li Shu, David Edwards, Alan Morgenthau, Yi-Hung Chiao, Xiao-Ming He, Yukihiko Sasaki, Scott Ferguson
  • Publication number: 20050153113
    Abstract: A label assembly and method of using the same to label articles durably, yet removably. In one embodiment, the label assembly is used to label fabric articles, such as clothing, and comprises (a) an image forming laminate for forming an image on the fabric article, the image forming laminate comprising an ink layer, the ink layer being bondable to the fabric article; and (b) an image removing laminate for removing the image from the fabric article, the image removing laminate comprising a remover layer, the remover layer, upon being activated by heat and/or light, being bondable to the ink layer of the image forming laminate; (c) whereby, upon bonding of the image removing laminate to the ink layer, the bonding between the image removing laminate and the ink layer is stronger than the bonding between the ink layer and the fabric article.
    Type: Application
    Filed: January 9, 2004
    Publication date: July 14, 2005
    Inventors: Dong-Tsai Hseih, Kuolih Tsai, Yi-Hung Chiao, Xiao-Ming He, Li Shu, Ramin Heydarpour, Alan Morgenthau
  • Publication number: 20050109606
    Abstract: In one embodiment, the invention relates to a method of depositing a silicon nitride based coating on a plastic substrate to form a composite barrier film which comprises depositing a silicon nitride based coating on the substrate by sputtering of a silicon target in an atmosphere comprising at least about 75% by volume nitrogen. In another embodiment, the composite films prepared by the method of the invention comprise a silicon nitride based coating on a flexible plastic substrate wherein the silicon nitride based coating has a thickness of less than about 220 nm and a visible light transmittance of at least about 75%.
    Type: Application
    Filed: October 21, 2004
    Publication date: May 26, 2005
    Inventors: Xiao-Ming He, Ramin Heydarpour, Ali Mehrabi, Jay Akhave
  • Publication number: 20050100689
    Abstract: A method for labeling fabrics, such as fabric garments, and a heat-transfer label well-suited for use in said method. In one embodiment, the heat-transfer label comprises (i) a support portion, the support portion comprising a carrier and a release layer; (ii) a wax layer, the wax layer overcoating the release layer; and (iii) a transfer portion, the transfer portion comprising an adhesive layer printed onto the wax layer and an ink design layer printed onto the adhesive layer. Preferably, at least a portion of the ink design layer is printed using a variable printing technique, such as thermal transfer printing.
    Type: Application
    Filed: July 30, 2004
    Publication date: May 12, 2005
    Inventors: Xiao-Ming He, Liviu Dinescu, Kuolih Tsai, Dong-Tsai Hseih, Li Shu, Yi-Hung Chiao, Alan Morgenthau, Ramin Heydarpour
  • Patent number: 6811815
    Abstract: Methods for roll-to-roll deposition of optically transparent and high conductivity metallic thin films are disclosed. In general, a method according to the present invention comprises: (1) providing a flexible plastic substrate; (2) depositing a multi-layered conductive metallic film on the flexible plastic substrate by a thin-film deposition technique to form a composite film; and (3) collecting the composite film in continuous rolls. Typically, the thin conductive metallic film is an InCeO—Ag—InCeO film. Typically, the thin-film deposition technique is DC magnetron sputtering. Another aspect of the invention is a composite film produced by a method according to the present invention.
    Type: Grant
    Filed: June 14, 2002
    Date of Patent: November 2, 2004
    Assignee: Avery Dennison Corporation
    Inventors: Xiao-Ming He, Ramin Heydarpour
  • Publication number: 20040121146
    Abstract: In one embodiment, the invention relates to composite films having barrier properties, and more particularly, to composite films which comprise a silicon nitride based coating on a flexible plastic substrate wherein the silicon nitride based coating has a thickness of less than about 220 nm and is deposited on the plastic substrate by sputtering of a silicon target in an atmosphere comprising at least 75% by volume of nitrogen. The composite barrier film has a visible light transmittance of at least about 75%.
    Type: Application
    Filed: December 20, 2002
    Publication date: June 24, 2004
    Inventors: Xiao-Ming He, Ramin Heydarpour, Ali R. Mehrabi, Jay R. Akhave
  • Publication number: 20040086717
    Abstract: Transparent conductive films for flat panel displays and methods for producing them are disclosed. In general, a method according to the present invention comprises: (1) providing a flexible plastic substrate; (2) depositing a multi-layered conductive metallic film on the flexible plastic substrate by a thin-film deposition technique to form a composite film, the multi-layered conductive metallic film comprising two layers of an alloy selected from the group consisting of indium cerium oxide (InCeO) and indium tin oxide (ITO) surrounding a layer of an alloy of silver, palladium, and copper (Ag/Pd/Cu); and (3) collecting the composite film in continuous rolls. Typically, the thin-film deposition technique is DC magnetron sputtering. Another aspect of the invention is a composite film produced by a method according to the present invention.
    Type: Application
    Filed: November 1, 2002
    Publication date: May 6, 2004
    Applicant: Avery Dennison Corporation
    Inventors: Yukihiko Sasaki, Xiao-Ming He
  • Publication number: 20040001915
    Abstract: Methods for roll-to-roll deposition of optically transparent and high conductivity metallic thin films are disclosed. In general, a method according to the present invention comprises: (1) providing a flexible plastic substrate; (2) depositing a multi-layered conductive metallic film on the flexible plastic substrate by a thin-film deposition technique to form a composite film; and (3) collecting the composite film in continuous rolls. Typically, the thin conductive metallic film is an InCeO—Ag—InCeO film. Typically, the thin-film deposition technique is DC magnetron sputtering. Another aspect of the invention is a composite film produced by a method according to the present invention.
    Type: Application
    Filed: June 14, 2002
    Publication date: January 1, 2004
    Applicant: Avery Dennison Corporation
    Inventors: Xiao-Ming He, Ramin Heydarpour
  • Patent number: 6572935
    Abstract: A plasma-based method for the deposition of diamond-like carbon (DLC) coatings is described. The process uses a radio-frequency inductively coupled discharge to generate a plasma at relatively low gas pressures. The deposition process is environmentally friendly and scaleable to large areas, and components that have geometrically complicated surfaces can be processed. The method has been used to deposit adherent 100-400 nm thick DLC coatings on metals, glass, and polymers. These coatings are between three and four times harder than steel and are therefore scratch resistant, and transparent to visible light. Boron and silicon doping of the DLC coatings have produced coatings having improved optical properties and lower coating stress levels, but with slightly lower hardness.
    Type: Grant
    Filed: October 27, 1999
    Date of Patent: June 3, 2003
    Assignee: The Regents of the University of California
    Inventors: Xiao-Ming He, Deok-Hyung Lee, Michael A. Nastasi, Kevin C. Walter, Michel G. Tuszewski
  • Patent number: 6572937
    Abstract: Fluorinated, diamond-like carbon (F-DLC) films are produced by a pulsed, glow-discharge plasma immersion ion processing procedure. The pulsed, glow-discharge plasma was generated at a pressure of 1 Pa from an acetylene (C2H2) and hexafluoroethane (C2F6) gas mixture, and the fluorinated, diamond-like carbon films were deposited on silicon <100>substrates. The film hardness and wear resistance were found to be strongly dependent on the fluorine content incorporated into the coatings. The hardness of the F-DLC films was found to decrease considerably when the fluorine content in the coatings reached about 20%. The contact angle of water on the F-DLC coatings was found to increase with increasing film fluorine content and to saturate at a level characteristic of polytetrafluoroethylene.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: June 3, 2003
    Assignee: The Regents of the University of California
    Inventors: Marko J. Hakovirta, Michael A. Nastasi, Deok-Hyung Lee, Xiao-Ming He
  • Publication number: 20030049468
    Abstract: The present invention relates a cascade arc plasma apparatus that produces plasma easily and without contamination through the incorporation of a DC pulsed power source. A variety of substrates and configurations can be coated quickly and efficiently without the need for a tie layer to produce scratch and abrasion resistant materials and materials that improved impermeability to gases.
    Type: Application
    Filed: August 15, 2002
    Publication date: March 13, 2003
    Inventors: Ing-Feng Hu, Xiao-Ming He
  • Publication number: 20020098285
    Abstract: Fluorinated, diamond-like carbon (F-DLC) films are produced by a pulsed, glow-discharge plasma immersion ion processing procedure. The pulsed, glow-discharge plasma was generated at a pressure of 1 Pa from an acetylene (C2H2) and hexafluoroethane (C2F6) gas mixture, and the fluorinated, diamond-like carbon films were deposited on silicon <100>substrates. The film hardness and wear resistance were found to be strongly dependent on the fluorine content incorporated into the coatings. The hardness of the F-DLC films was found to decrease considerably when the fluorine content in the coatings reached about 20%. The contact angle of water on the F-DLC coatings was found to increase with increasing film fluorine content and to saturate at a level characteristic of polytetrafluoroethylene.
    Type: Application
    Filed: November 30, 2000
    Publication date: July 25, 2002
    Inventors: Marko J. Hakovirta, Michael A. Nastasi, Deok-Hyung Lee, Xiao-Ming He