Patents by Inventor Xiaomei XUE

Xiaomei XUE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11099323
    Abstract: The present invention provides a surface plasmon-optical-electrical hybrid conduction nano heterostructure and a preparation method therefor. The structure includes an exciting light source, a semiconductor nano-structure array, a two-dimensional plasmonic micro-nano structure, a sub-wavelength plasmon polariton guided wave, an emergent optical wave, a one-dimensional plasmonic micro-nano structure, a wire, a metal electrode, a conductive substrate, a probe molecule, an atomic-force microscopic conductive probe and a voltage source. The method achieves a semiconductor seed crystal with controllable distribution and density by controlling free metal ions, air, water or oxygen on a metal substrate to achieve highly uniform control of the seed crystal, and then strictly controls a length-to-diameter ratio and distribution of a semiconductor structure by continuous growth. Therefore, a new nano optics platform is provided for studying various novel effects produced by interaction between light and substances.
    Type: Grant
    Filed: May 28, 2018
    Date of Patent: August 24, 2021
    Assignee: SOUTHEAST UNIVERSITY
    Inventors: Xiaoyang Zhang, Tong Zhang, Shanjiang Wang, Xiaomei Xue, Huanli Zhou
  • Patent number: 11077499
    Abstract: A controllable preparation method for a plasmonic nanonail structure is provided. A size of a nanomaterial can be controlled at sub-wavelength. The nanomaterial has good localized surface plasmon resonance effect, and the optical, electrical and mechanical properties of the nanometer material all can be regulated. The plasmonic nanonail is composed of two parts, i.e., a silver nanorod, a gold nanorod or a silver-gold-silver alloy nanorod and an approximate equilateral triangular nano-silver plate growing on the nanorod. A length of the nanorod is controlled within 20-30 nanometers, a diameter of the nanorod is controlled within 10-200 nanometers, a side length of the triangular nano-silver plate is controlled within 20 nanometers to 2 microns, and a size of the triangular plate is less than or equal to the length of the nanorod.
    Type: Grant
    Filed: May 28, 2018
    Date of Patent: August 3, 2021
    Assignee: Southeast University
    Inventors: Xiaoyang Zhang, Tong Zhang, Xiaomei Xue, Yanyan Qin
  • Publication number: 20200400887
    Abstract: The present invention provides a surface plasmon-optical-electrical hybrid conduction nano heterostructure and a preparation method therefor. The structure includes an exciting light source, a semiconductor nano-structure array, a two-dimensionalplasmonic micro-nano structure, a sub-wavelength plasmon polariton guided wave, an emergent optical wave, a one-dimensionalplasmonic micro-nano structure, a wire, a metal electrode, a conductive substrate, a probe molecule, an atomic-force microscopic conductive probe and a voltage source. The method achieves a semiconductor seed crystal with controllable distribution and density by controlling free metal ions, air, water or oxygen on a metal substrate to achieve highly uniform control of the seed crystal, and then strictly controls a length-to-diameter ratio and distribution of a semiconductor structure by continuous growth. Therefore, a new nano optics platform is provided for studying various novel effects produced by interaction between light and substances.
    Type: Application
    Filed: May 28, 2018
    Publication date: December 24, 2020
    Applicant: SOUTHEAST UNIVERSITY
    Inventors: Xiaoyang ZHANG, Tong ZHANG, Shanjiang WANG, Xiaomei XUE, Huanli ZHOU
  • Publication number: 20200398345
    Abstract: A controllable preparation method for a plasmonic nanonail structure is provided. A size of a nanomaterial can be controlled at sub-wavelength. The nanomaterial has good localized surface plasmon resonance effect, and the optical, electrical and mechanical properties of the nanometer material all can be regulated. The plasmonic nanonail is composed of two parts, i.e., a silver nanorod, a gold nanorod or a silver-gold-silver alloy nanorod and an approximate equilateral triangular nano-silver plate growing on the nanorod. A length of the nanorod is controlled within 20-30 nanometers, a diameter of the nanorod is controlled within 10-200 nanometers, a side length of the triangular nano-silver plate is controlled within 20 nanometers to 2 microns, and a size of the triangular plate is less than or equal to the length of the nanorod.
    Type: Application
    Filed: May 28, 2018
    Publication date: December 24, 2020
    Applicant: Southeast University
    Inventors: Xiaoyang ZHANG, Tong ZHANG, Xiaomei XUE, Yanyan QIN
  • Patent number: 10730113
    Abstract: A large-scale multi-step synthesis method for ultralong silver nanowire with controllable diameter, comprises: an ethylene glycol solution containing polyvinylpyrrolidone and sodium chloride is fully heated to obtain a solution with strong reducibility, and then silver nitrate in glycol solution is added for a generation of a large number of crystal seeds; hydrogen peroxide is used to achieve the selection of the crystal seeds for a small amount of crystal seeds with particular sizes; the temperature is immediately raised to increase the reaction rate until the threshold of the etching crystal seeds of nitric acid is broke through; the temperature is lowered for long-timed reaction to slow down the reaction rate, reduce the probability of the isotropic seeds by self-nucleation and promote the absorption of small nucleus in the radial direction of large nucleus or nanowire, thus obtaining the ultralong silver nanowire.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: August 4, 2020
    Assignee: SOUTHEAST UNIVERSITY
    Inventors: Xiaoyang Zhang, Tong Zhang, Xiaomei Xue
  • Publication number: 20190168309
    Abstract: A large-scale multi-step synthesis method for ultralong silver nanowire with controllable diameter, comprises: an ethylene glycol solution containing polyvinylpyrrolidone and sodium chloride is fully heated to obtain a solution with strong reducibility, and then silver nitrate in glycol solution is added for a generation of a large number of crystal seeds; hydrogen peroxide is used to achieve the selection of the crystal seeds for a small amount of crystal seeds with particular sizes; the temperature is immediately raised to increase the reaction rate until the threshold of the etching crystal seeds of nitric acid is broke through; the temperature is lowered for long-timed reaction to slow down the reaction rate, reduce the probability of the isotropic seeds by self-nucleation and promote the absorption of small nucleus in the radial direction of large nucleus or nanowire, thus obtaining the ultralong silver nanowire.
    Type: Application
    Filed: March 3, 2017
    Publication date: June 6, 2019
    Inventors: Xiaoyang ZHANG, Tong ZHANG, Xiaomei XUE