Patents by Inventor Xin-Gui ZHANG

Xin-Gui ZHANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11527526
    Abstract: The present disclosure provides a semiconductor device manufacturing method. The method includes: providing a semiconductor substrate, including a high-frequency-block group and a low-power-block group; forming high-frequency-type logic standard cells on the high-frequency-block group of the semiconductor substrate. The high-frequency-type logic standard cells have a high-frequency-type cell height, a high-frequency-type operating frequency, and a high-frequency-type power. The method further includes forming low-power-type logic standard cells on the low-power-block group of the semiconductor substrate. The low-power-type logic standard cells have a low-power-type cell height, a low-power-type operating frequency, and a low-power-type power.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: December 13, 2022
    Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, SMIC New Technology Research and Development (Shanghai) Corporation
    Inventors: Xin Gui Zhang, Yao Qi Dong
  • Publication number: 20210028161
    Abstract: The present disclosure provides a semiconductor device manufacturing method. The method includes: providing a semiconductor substrate, including a high-frequency-block group and a low-power-block group; forming high-frequency-type logic standard cells on the high-frequency-block group of the semiconductor substrate. The high-frequency-type logic standard cells have a high-frequency-type cell height, a high-frequency-type operating frequency, and a high-frequency-type power. The method further includes forming low-power-type logic standard cells on the low-power-block group of the semiconductor substrate.
    Type: Application
    Filed: October 1, 2020
    Publication date: January 28, 2021
    Inventors: Xin Gui ZHANG, Yao QI DONG
  • Patent number: 10903201
    Abstract: The present disclosure provides a semiconductor device and a manufacturing method thereof. The semiconductor device includes: a semiconductor substrate including a high-frequency-block group and a low-power-block group; high-frequency-type logic standard cells located on the high-frequency-block group, and having a high-frequency-type cell height, a high-frequency-type operating frequency, and a high-frequency-type power; low-power-type logic standard cells located on the low-power-block group, and having a low-power-type cell height, a low-power-type operating frequency, and a low-power-type power. The high-frequency-type cell height is higher than the low-power-type cell height. The high-frequency-type operating frequency is greater than the low-power-type operating frequency. The high-frequency-type power is greater than the low-power-type power. The high-frequency-type logic standard cells include high-frequency-type fins, and the low-power-type logic standard cells include low-power-type fins.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: January 26, 2021
    Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, SMIC New Technology Research and Development (Shanghai) Corporation
    Inventors: Xin Gui Zhang, Yao Qi Dong
  • Publication number: 20190206853
    Abstract: The present disclosure provides a semiconductor device and a manufacturing method thereof. The semiconductor device includes: a semiconductor substrate including a high-frequency-block group and a low-power-block group; high-frequency-type logic standard cells located on the high-frequency-block group, and having a high-frequency-type cell height, a high-frequency-type operating frequency, and a high-frequency-type power; low-power-type logic standard cells located on the low-power-block group, and having a low-power-type cell height, a low-power-type operating frequency, and a low-power-type power. The high-frequency-type cell height is higher than the low-power-type cell height. The high-frequency-type operating frequency is greater than the low-power-type operating frequency. The high-frequency-type power is greater than the low-power-type power. The high-frequency-type logic standard cells include high-frequency-type fins, and the low-power-type logic standard cells include low-power-type fins.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 4, 2019
    Inventors: Xin Gui ZHANG, Yao QI DONG
  • Patent number: 9236435
    Abstract: Tunneling field effect transistors are provided. The tunneling field effect transistor includes a source region, a drain region, and a channel region disposed between the source region and the drain region. The channel region includes a first region adjacent to the source region and a second region adjacent to the drain region. A first energy band gap of the first region is lower than a second energy band gap of the second region, and the first region has a direct energy band gap.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: January 12, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Xin-Gui Zhang, Tae-Yong Kwon, Sang-Su Kim
  • Publication number: 20150200288
    Abstract: Tunneling field effect transistors are provided. The tunneling field effect transistor includes a source region, a drain region, and a channel region disposed between the source region and the drain region. The channel region includes a first region adjacent to the source region and a second region adjacent to the drain region. A first energy band gap of the first region is lower than a second energy band gap of the second region, and the first region has a direct energy band gap.
    Type: Application
    Filed: December 8, 2014
    Publication date: July 16, 2015
    Inventors: Xin-Gui ZHANG, Tae-Yong KWON, Sang-Su KIM
  • Publication number: 20150200289
    Abstract: The inventive concepts provide tunneling field effect transistors. The tunneling field effect transistor includes a source region, a drain region, a channel region, and a pocket region. The channel region includes a first material, and is disposed between the source region and the drain region. The pocket region includes a second material, and is disposed between the source region and the drain region. The channel region includes a first region adjacent to the source region, and a second region adjacent to the drain region. A first energy band gap of the first region is smaller than a second energy band gap of the second region, and a third energy band gap of the pocket region is different from the first energy band gap and the second energy band gap.
    Type: Application
    Filed: December 15, 2014
    Publication date: July 16, 2015
    Inventors: Xin-Gui ZHANG, Tae-Yong KWON, Jung-Gil YANG, Sang-Su KIM