Patents by Inventor Xingmao Jiang

Xingmao Jiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230183088
    Abstract: A method for making barium titanate nanopowders, includes mixing barium salt, titanium source, carbohydrate, and urea in a container according to a first ratio, stirring the barium salt, the titanium source, the carbohydrate, and the urea in the container under a heating condition approximately from 60° C. to 120° C. to obtain a molten mixture, heating the molten mixture to dehydrate and carbonize the carbohydrate to obtain a dark brown solid, and performing a heat treatment on the dark brown solid to obtain the barium titanate nanopowders.
    Type: Application
    Filed: December 8, 2022
    Publication date: June 15, 2023
    Inventors: XINGMAO JIANG, QILONG WU, LONG CHEN, LANG YANG, BIYI CHEN, SHENGJUN YI, YUNFENG LIAO
  • Publication number: 20230144242
    Abstract: A method for making yttrium aluminum garnet (YAG) nanopowders, includes mixing carbohydrate and organic amine in a container according to a first ratio, stirring the carbohydrate and organic amine in the container under a heating condition for 2 minutes to 120 minutes for melting the carbohydrate and the organic amine to obtain a clear and transparent mixed solution, adding yttrium salt and aluminum salt at a second ratio to the clear and transparent mixed solution, and stirring the yttrium salt, the aluminum salt, and the clear and transparent mixed solution in the container under the heating condition for 5 minutes to120 minutes to form a uniform molten mixture, heating the uniform molten mixture to dehydrate and carbonize the carbohydrate to obtain a dark brown fluffy solid, and performing a heat treatment on the dark brown fluffy solid at 800° C. to 1500° C. to obtain the YAG nanopowders.
    Type: Application
    Filed: November 10, 2022
    Publication date: May 11, 2023
    Inventors: XINGMAO JIANG, SHENGJUN YI, LANG YANG, BIYI CHEN, JIN'E TAN, PINCAI LAI, LONG CHEN, JINJIAN PAN
  • Patent number: 11077496
    Abstract: The present disclosure provides a microwave-assisted carbon template method for preparing supported nano metal-oxides or nano metals. The method includes mixing a carbohydrate, urea, and a precursor of an oxide support with a metal salt in a container, adding a certain amount of water, and completely dissolving the solid chemicals through ultrasonic stirring to form a homogeneous solution. The method also includes performing microwave treatment on the obtained solution for approximately 0.1 minute to 60 minutes with a microwave heating power in a range of approximately 100 W to 50 kW to dehydrate and carbonize the carbohydrate and thus form a dark brown solid. The method further includes performing heat treatment on the dark brown solid at a temperature in a range of approximately 200° C. to 1100° C. in an air atmosphere for approximately 0.5 hour to 24 hours to obtain a metal-oxide supported by a porous oxide support.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: August 3, 2021
    Assignees: WUHAN INSTITUTE OF TECHNOLOGY, CHANGZHOU UNIVERSITY
    Inventors: Xingmao Jiang, Jingyuan Cao, Xue Tong, Zhongnan Zhang, Jian Feng
  • Publication number: 20190176231
    Abstract: The present disclosure provides a microwave-assisted carbon template method for preparing supported nano metal-oxides or nano metals. The method includes mixing a carbohydrate, urea, and a precursor of an oxide support with a metal salt in a container, adding a certain amount of water, and completely dissolving the solid chemicals through ultrasonic stirring to form a homogeneous solution. The method also includes performing microwave treatment on the obtained solution for approximately 0.1 minute to 60 minutes with a microwave heating power in a range of approximately 100 W to 50 kW to dehydrate and carbonize the carbohydrate and thus form a dark brown solid. The method further includes performing heat treatment on the dark brown solid at a temperature in a range of approximately 200° C. to 1100° C. in an air atmosphere for approximately 0.5 hour to 24 hours to obtain a metal-oxide supported by a porous oxide support.
    Type: Application
    Filed: February 19, 2019
    Publication date: June 13, 2019
    Inventors: Xingmao JIANG, Jingyuan CAO, Xue TONG, Zhongnan ZHANG, Jian FENG
  • Patent number: 9827559
    Abstract: The present disclosure provides a method for preparing a molecular sieve catalyst. A water-in-oil micro-emulsion including a continuous phase containing an organic solvent and a dispersed phase containing an aqueous solution containing one or more metal salts and a water-soluble organic carbon source is prepared, hydrolyzed, and azeotropically distilled to form a mixture solution. The mixture solution is heated to carbonize the water-soluble organic carbon source to form nanoparticles each having a core-shell structure including a carbon-shelled metal-oxide. The nanoparticles containing the carbon-shelled metal-oxide are dispersed in a molecular sieve precursor solution. A nanoparticle-loaded molecular sieve is formed from the molecular sieve precursor solution containing the nanoparticles, and then calcined to remove carbon there-from to form a metal-oxide loaded molecular sieve.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: November 28, 2017
    Assignee: CHANGZHOU UNIVERSITY
    Inventors: Xingmao Jiang, Long Sun, Chuanling Chen, Zhen Chen
  • Patent number: 9624110
    Abstract: The present disclosure provides a method and apparatus for preparing high-purity crystalline silica particles by mixing colloidal silica with an organic base to form a mixed sol. The mixed sol is heated up to a reaction temperature of about 180 degrees Celsius or above, which is held for a reaction time of about 8 to about 168 hours for a hydrothermal synthesis process in the mixed sol. A gravitational setting or a centrifugation is performed on the mixed sol to provide precipitates from the mixed sol. The precipitates are washed with deionized water to remove residual organic base. The washed precipitates are dried at about 60 to about 80 degrees Celsius and are collected and packaged to obtain high-purity crystalline silica particles.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: April 18, 2017
    Assignee: CHANGZHOU UNIVERSITY
    Inventors: Xingmao Jiang, Tao Zhang, Hong Jia
  • Patent number: 9480653
    Abstract: Various embodiments provide materials and methods for synthesizing protocells for use in targeted delivery of cargo components to cancer cells. In one embodiment, the lipid bilayer can be fused to the porous particle core to form a protocell. The lipid bilayer can be modified with targeting ligands or other ligands to achieve targeted delivery of cargo components that are loaded within the protocell to a target cell, e.g., a type of cancer. Shielding materials can be conjugated to the surface of the lipid bilayer to reduce undesired non-specific binding.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: November 1, 2016
    Assignees: STC.UNM, Sandia Corporation
    Inventors: C. Jeffrey Brinker, Carlee Erin Ashley, Xingmao Jiang, Juewen Liu, David S. Peabody, Walker Richard Wharton, Eric Carnes, Bryce Chackerian, Cheryl L. Willman
  • Publication number: 20160074849
    Abstract: The present disclosure provides a method for preparing a molecular sieve catalyst. A water-in-oil micro-emulsion including a continuous phase containing an organic solvent and a dispersed phase containing an aqueous solution containing one or more metal salts and a water-soluble organic carbon source is prepared, hydrolyzed, and azeotropically distilled to form a mixture solution. The mixture solution is heated to carbonize the water-soluble organic carbon source to form nanoparticles each having a core-shell structure including a carbon-shelled metal-oxide. The nanoparticles containing the carbon-shelled metal-oxide are dispersed in a molecular sieve precursor solution. A nanoparticle-loaded molecular sieve is formed from the molecular sieve precursor solution containing the nanoparticles, and then calcined to remove carbon there-from to form a metal-oxide loaded molecular sieve.
    Type: Application
    Filed: November 25, 2015
    Publication date: March 17, 2016
    Inventors: XINGMAO JIANG, LONG SUN, CHUANLING CHEN, ZHEN CHEN
  • Publication number: 20150320681
    Abstract: Various embodiments provide materials and methods for synthesizing protocells for use in targeted delivery of cargo components to cancer cells. In one embodiment, the lipid bilayer can be fused to the porous particle core to form a protocell. The lipid bilayer can be modified with targeting ligands or other ligands to achieve targeted delivery of cargo components that are loaded within the protocell to a target cell, e.g., a type of cancer. Shielding materials can be conjugated to the surface of the lipid bilayer to reduce undesired non-specific binding.
    Type: Application
    Filed: July 13, 2015
    Publication date: November 12, 2015
    Inventors: C. Jeffrey Brinker, Carlee Erin Ashley, Xingmao Jiang, Juewen Liu, David S. Peabody, Walker Richard Wharton, Eric Carnes, Bryce Chackerian, Cheryl L. Willman
  • Publication number: 20150284254
    Abstract: The present disclosure provides a method and apparatus for preparing high-purity crystalline silica particles by mixing colloidal silica with an organic base to form a mixed sol. The mixed sol is heated up to a reaction temperature of about 180 degrees Celsius or above, which is held for a reaction time of about 8 to about 168 hours for a hydrothermal synthesis process in the mixed sol. A gravitational setting or a centrifugation is performed on the mixed sol to provide precipitates from the mixed sol. The precipitates are washed with deionized water to remove residual organic base. The washed precipitates are dried at about 60 to about 80 degrees Celsius and are collected and packaged to obtain high-purity crystalline silica particles.
    Type: Application
    Filed: June 18, 2015
    Publication date: October 8, 2015
    Inventors: XINGMAO JIANG, TAO ZHANG, HONG JIA
  • Publication number: 20150164798
    Abstract: Various embodiments provide materials and methods for synthesizing protocells for use in targeted delivery of cargo components to cancer cells. In one embodiment, the lipid bilayer can be fused to the porous particle core to form a protocell. The lipid bilayer can be modified with targeting ligands or other ligands to achieve targeted delivery of cargo components that are loaded within the protocell to a target cell, e.g., a type of cancer. Shielding materials can be conjugated to the surface of the lipid bilayer to reduce undesired non-specific binding.
    Type: Application
    Filed: February 20, 2015
    Publication date: June 18, 2015
    Inventors: C. Jeffrey Brinker, Carlee Erin Ashley, Xingmao Jiang, Juewen Liu, David S. Peabody, Walker Richard Wharton, Eric Carnes, Bryce Chackerian, Cheryl L. Willman
  • Patent number: 8992984
    Abstract: Various embodiments provide materials and methods for synthesizing protocells for use in targeted delivery of cargo components to cancer cells. In one embodiment, the lipid bilayer can be fused to the porous particle core to form a protocell. The lipid bilayer can be modified with targeting ligands or other ligands to achieve targeted delivery of cargo components that are loaded within the protocell to a target cell, e.g., a type of cancer. Shielding materials can be conjugated to the surface of the lipid bilayer to reduce undesired non-specific binding.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: March 31, 2015
    Assignees: STC.UNM, Sandia Corporation
    Inventors: C. Jeffrey Brinker, Carlee Erin Ashley, Xingmao Jiang, Juewen Liu, David S. Peabody, Walker Richard Wharton, Eric Carnes, Bryce Chackerian, Cheryl L. Willman
  • Patent number: 8864045
    Abstract: Exemplary embodiments provide materials and methods for forming monodisperse particles. In one embodiment, the monodisperse particles can be formed by first spraying a nanoparticle-containing dispersion into aerosol droplets and then heating the aerosol droplets in the presence of a shell precursor to form core-shell particles. By removing either the shell layer or the nanoparticle core of the core-shell particles, monodisperse nanoparticles can be formed.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: October 21, 2014
    Assignee: STC.UNM
    Inventors: Xingmao Jiang, C. Jeffrey Brinker
  • Patent number: 8501057
    Abstract: Various embodiments provide materials and methods of forming hollow cubes. The hollow cubes can be formed to include a metal oxide shell layer encasing a cubic hollow space. In one embodiment, the hollow cubes can be formed from an emulsion having aqueous droplets with an interfacial layer encasing an aqueous core. By an exemplary freezing treatment, the aqueous droplets having a spherical shape can be transformed into ice components having a cubic shape. Metal oxide precursors can then be added to react with the encased cube-shaped ice core at the interface with the interfacial layer to form a sol-gel metal oxide shell layer. Hollow cubes can be formed by removing the cube-shaped ice core from the sol-gel metal oxide shell layer.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: August 6, 2013
    Assignee: STC.UNM
    Inventors: Xingmao Jiang, C. Jeffrey Brinker
  • Patent number: 8318127
    Abstract: Exemplary embodiments provide materials and methods of forming a metal oxide composite and a porous metal oxide, which can be used for applications including catalysis, sensors, energy storage, solar cells, heavy metal removal and separations, etc. In one embodiment, a one-step solvothermal process can be used to form the metal oxide phase with high crystallinity and high surface area.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: November 27, 2012
    Assignee: STC.UNM
    Inventors: Xingmao Jiang, C. Jeffrey Brinker
  • Patent number: 8246933
    Abstract: A method of forming and resulting nano-structured composite includes atomizing a mixture of an amount of each of aminopropyltriethoxysilane, AgNO3, DI water, and ethanol in a carrier gas; heating the atomized droplets at a selected temperature for a time sufficient to reduce the Ag to its elemental form in a silica matrix; and outputting the nano structured composite particles. A predetermined heating time is from about 0.01 to about 40 seconds and a selected heating temperature is from about 200 to about 800° C. The nano structured composite includes a plurality of nano particles at a contact surface of the composite, dispersed throughout and at a contact surface of the composite, or dispersed throughout the composite.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: August 21, 2012
    Assignee: STC.UNM
    Inventors: Xingmao Jiang, C. Jeffrey Brinker, Yong Lin, Yung-Sung Cheng
  • Patent number: 7744673
    Abstract: In accordance with invention, there are methods for fabricating hollow spheres and nanofoams. The method for making hollow spheres can include providing a homogeneous precursor solution including a first solvent and one or more anhydrous precursor species and forming aerosol droplets having a first size distribution using the homogeneous precursor solution in an anhydrous carrier gas. The method can also include transporting the aerosol droplets through an aerosol reactor including a reactant to form a plurality of hollow spheres, wherein each of the plurality of hollow spheres can be formed by one or more chemical reactions occurring at a surface of the aerosol droplet. The method can further include controlling size and thickness of the hollow spheres by one or more of the precursor solution concentration, aerosol droplet size, temperature, residence time of the aerosol droplets in the aerosol reactor, and the reactant distribution in the aerosol reactor.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: June 29, 2010
    Assignee: STC.UNM
    Inventors: Xingmao Jiang, Charles Jeffrey Brinker
  • Publication number: 20090175948
    Abstract: A method of forming and resulting nano-structured composite includes atomizing a mixture of an amount of each of aminopropyltriethoxysilane, AgNO3, DI water, and ethanol in a carrier gas; heating the atomized droplets at a selected temperature for a time sufficient to reduce the Ag to its elemental form in a silica matrix; and outputting the nano structured composite particles. A predetermined heating time is from about 0.01 to about 40 seconds and a selected heating temperature is from about 200 to about 800° C. The nano structured composite includes a plurality of nano particles at a contact surface of the composite, dispersed throughout and at a contact surface of the composite, or dispersed throughout the composite.
    Type: Application
    Filed: November 26, 2008
    Publication date: July 9, 2009
    Inventors: Xingmao JIANG, C. Jeffrey Brinker, Yong Lin, Yung-Sung Cheng
  • Publication number: 20080210053
    Abstract: In accordance with invention, there are methods for fabricating hollow spheres and nanofoams. The method for making hollow spheres can include providing a homogeneous precursor solution including a first solvent and one or more anhydrous precursor species and forming aerosol droplets having a first size distribution using the homogeneous precursor solution in an anhydrous carrier gas. The method can also include transporting the aerosol droplets through an aerosol reactor including a reactant to form a plurality of hollow spheres, wherein each of the plurality of hollow spheres can be formed by one or more chemical reactions occurring at a surface of the aerosol droplet. The method can further include controlling size and thickness of the hollow spheres by one or more of the precursor solution concentration, aerosol droplet size, temperature, residence time of the aerosol droplets in the aerosol reactor, and the reactant distribution in the aerosol reactor.
    Type: Application
    Filed: October 22, 2007
    Publication date: September 4, 2008
    Inventors: Xingmao Jiang, Charles Jeffrey Brinker