Patents by Inventor Xingtao Gao

Xingtao Gao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240132789
    Abstract: Disclosed herein is a phosphorus modified UZM-35 zeolite, methods of its preparation, and methods of its use in hydrocarbon conversion processes, e.g., as part of a catalyst component and/or as part of a catalyst composition. Catalyst components with phosphorus modified UZM-35, their methods of preparation, and their methods of use suitable for petroleum refining applications (e.g., hydrocarbon conversion processes such as fluid catalytic cracking and hydrocracking) are described herein. Also disclosed herein are catalyst compositions, which include phosphorus modified UZM-35 and catalyst components thereof along with at least one additional catalyst component. Methods of preparing and methods of using such catalyst compositions are also encompassed by the instant disclosure.
    Type: Application
    Filed: March 2, 2022
    Publication date: April 25, 2024
    Inventors: Toshiyuki YOKOI, Bilge YILMAZ, Chandrashekhar KELKAR, Christopher John GILBERT, David M. STOCKWELL, Xingtao GAO
  • Publication number: 20240091748
    Abstract: The present technology provides a fluid catalytic cracking (FCC) catalyst composition that includes a Y-zeolite that includes a rare earth element or oxide thereof and an alumina matrix, wherein the alumina matrix includes y-AhCb or pseudo-boehmite and a dopant; and the dopant is selected from a Group IIIB metal, Group IVB metal, Group IV A element, Group VA element, an oxide thereof, or a combination of two or more thereof.
    Type: Application
    Filed: July 14, 2021
    Publication date: March 21, 2024
    Inventors: Xingtao Gao, David M. Stockwell, Junmei Wei
  • Publication number: 20240034938
    Abstract: A bottoms cracking catalyst composition, comprising: about 30 to about 60 wt % alumina; greater than 0 to about 10 wt % of a dopant, measured as the oxide; about 2 to about 20 wt % reactive silica; about 3 to about 20 wt % of a component comprising peptizable boehmite, colloidal silica, aluminum chlorohydrol, or a combination of any two or more thereof, and about 10 to about 50 wt % of kaolin.
    Type: Application
    Filed: October 12, 2023
    Publication date: February 1, 2024
    Inventors: David M. STOCKWELL, Junmei WEI, Xingtao GAO, David H. HARRIS
  • Publication number: 20240001351
    Abstract: Disclosed herein in certain embodiments is a fluid catalyst cracking (FCC) additive composition that includes a first component, a second component, and optionally a third component. The first component includes beta zeolite and a first matrix. The second component includes ZSM-5 zeolite and a second matrix. The third component includes Y zeolite and a third matrix. The components are present in the additive composition in a range that provides for enhanced butylenes to propylene selectivity ratio and total butylenes yield when catalytically cracking a hydrocarbon feed.
    Type: Application
    Filed: November 19, 2021
    Publication date: January 4, 2024
    Inventors: Bilge YILMAZ, Vasileios KOMVOKIS, Wathudura Indika Namal DE SILVA, Xingtao GAO
  • Patent number: 11827853
    Abstract: A bottoms cracking catalyst composition, comprising: about 30 to about 60 wt % alumina; greater than 0 to about 10 wt % of a dopant, measured as the oxide; about 2 to about 20 wt % reactive silica; about 3 to about 20 wt % of a component comprising peptizable boehmite, colloidal silica, aluminum chlorohydrol, or a combination of any two or more thereof; and about 10 to about 50 wt % of kaolin.
    Type: Grant
    Filed: April 12, 2022
    Date of Patent: November 28, 2023
    Assignee: BASF CORPORATION
    Inventors: David M. Stockwell, Junmei Wei, Xingtao Gao, David H. Harris
  • Publication number: 20220235280
    Abstract: A bottoms cracking catalyst composition, comprising: about 30 to about 60 wt % alumina; greater than 0 to about 10 wt % of a dopant, measured as the oxide; about 2 to about 20 wt % reactive silica; about 3 to about 20 wt % of a component comprising peptizable boehmite, colloidal silica, aluminum chlorohydrol, or a combination of any two or more thereof; and about 10 to about 50 wt % of kaolin.
    Type: Application
    Filed: April 12, 2022
    Publication date: July 28, 2022
    Inventors: David M. STOCKWELL, Junmei WEI, Xingtao GAO, David H. HARRIS
  • Patent number: 11332675
    Abstract: A bottoms cracking catalyst composition, comprising: about 30 to about 60 wt % alumina; greater than 0 to about 10 wt % of a dopant, measured as the oxide; about 2 to about 20 wt % reactive silica; about 3 to about 20 wt % of a component comprising peptizable boehmite, colloidal silica, aluminum chlorohydrol, or a combination of any two or more thereof; and about 10 to about 50 wt % of kaolin.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: May 17, 2022
    Assignee: BASF Corporation
    Inventors: David M. Stockwell, Junmei Wei, Xingtao Gao, David H. Harris
  • Publication number: 20210253955
    Abstract: A bottoms cracking catalyst composition, comprising: about 30 to about 60 wt % alumina; greater than 0 to about 10 wt % of a dopant, measured as the oxide; about 2 to about 20 wt % reactive silica; about 3 to about 20 wt % of a component comprising peptizable boehmite, colloidal silica, aluminum chlorohydrol, or a combination of any two or more thereof; and about 10 to about 50 wt % of kaolin.
    Type: Application
    Filed: December 10, 2018
    Publication date: August 19, 2021
    Applicant: BASF Corporation
    Inventors: David M. STOCKWELL, Junmei WEI, Xingtao GAO, David H. HARRIS
  • Patent number: 10799855
    Abstract: A catalytic additive comprising an intermediate pore zeolite, such as ZSM-5 is treated so as to improve propylene yields when the additive is included in a FCC catalytic inventory by first treating the zeolite with a phosphorus compound to incorporate the phosphorus in the zeolite, and mixing the P-treated zeolite with a matrix component comprising kaolin and another phosphorus-containing compound.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: October 13, 2020
    Assignee: BASF Corporation
    Inventors: Xingtao Gao, David Hamilton Harris
  • Patent number: 10786807
    Abstract: Disclosed in certain embodiments are ZSM-5 zeolite microspheres. The ZSM-5 zeolite microspheres may contain substantially no clay or calcined clay material. The ZSM-5 zeolite microspheres may have a ZSM-5 zeolite content of at least 70 wt. %. Disclosed in certain embodiments is a method of forming ZSM-5 zeolite microspheres including treating microspheres with at least one alkali solution.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: September 29, 2020
    Assignee: BASF Corporation
    Inventors: Xingtao Gao, Christopher R. Castellano, Brendan Patrick Dowd
  • Patent number: 10335777
    Abstract: Disclosed in certain embodiments are ZSM-5 zeolite microspheres. Disclosed in certain embodiments is a method of forming ZSM-5 zeolite microspheres including: 1) shaping a mixture into microspheres where the mixture includes a silica material and of particulates selected from at least one high-density material with an absolute bulk density of at least 0.3 g/cc, ZSM-5 zeolite crystals, and combinations thereof; 2) calcining the microspheres; and 3) reacting and subsequently heating the microspheres with at least one alkali solution to form ZSM-5 zeolite in-situ on the microspheres, where the ZSM-5 zeolite microspheres contain substantially no clay or calcined clay material.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: July 2, 2019
    Assignee: BASF Corporation
    Inventors: Xingtao Gao, Christopher R. Castellano, Brendan Patrick Dowd
  • Publication number: 20190151831
    Abstract: Disclosed in certain embodiments are ZSM-5 zeolite microspheres. Disclosed in certain embodiments is a method of forming ZSM-5 zeolite microspheres including: 1) shaping a mixture into microspheres where the mixture includes a silica material and of particulates selected from at least one high-density material with an absolute bulk density of at least 0.3 g/cc, ZSM-5 zeolite crystals, and combinations thereof; 2) calcining the microspheres; and 3) reacting and subsequently heating the microspheres with at least one alkali solution to form ZSM-5 zeolite in-situ on the microspheres, where the ZSM-5 zeolite microspheres contain substantially no clay or calcined clay material.
    Type: Application
    Filed: January 17, 2019
    Publication date: May 23, 2019
    Inventors: Xingtao Gao, Christopher R. Castellano, Brendan Patrick Dowd
  • Patent number: 10213774
    Abstract: Disclosed in certain embodiments are ZSM-5 zeolite microspheres. Disclosed in certain embodiments is a method of forming ZSM-5 zeolite microspheres including: 1) shaping a mixture into microspheres where the mixture includes a silica material and of particulates selected from at least one high-density material with an absolute bulk density of at least 0.3 g/cc, ZSM-5 zeolite crystals, and combinations thereof; 2) calcining the microspheres; and 3) reacting and subsequently heating the microspheres with at least one alkali solution to form ZSM-5 zeolite in-situ on the microspheres, where the ZSM-5 zeolite microspheres contain substantially no clay or calcined clay material.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: February 26, 2019
    Assignee: BASF Corporation
    Inventors: Xingtao Gao, Christopher R. Castellano, Brendan Patrick Dowd
  • Patent number: 10207257
    Abstract: A zeolite-containing fixed bed catalyst is formed by pre-shaping a mixture of a reactive aluminum-containing component and a matrix component into pre-shaped particles, and contacting the pre-shaped particles with a reactive liquid containing a silicate for a sufficient time and temperature to form an in-situ zeolite within the pre-shaped particles. The contacting of the pre-shaped particles and the liquid is achieved such that there is relative movement between the pre-shaped particles and the liquid.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: February 19, 2019
    Assignee: BASF Corporation
    Inventors: Xingtao Gao, David Stockwell, Gary M. Smith
  • Publication number: 20180071723
    Abstract: Disclosed in certain embodiments are ZSM-5 zeolite microspheres. Disclosed in certain embodiments is a method of forming ZSM-5 zeolite microspheres including: 1) shaping a mixture into microspheres where the mixture includes a silica material and of particulates selected from at least one high-density material with an absolute bulk density of at least 0.3 g/cc, ZSM-5 zeolite crystals, and combinations thereof; 2) calcining the microspheres; and 3) reacting and subsequently heating the microspheres with at least one alkali solution to form ZSM-5 zeolite in-situ on the microspheres, where the ZSM-5 zeolite microspheres contain substantially no clay or calcined clay material.
    Type: Application
    Filed: April 8, 2016
    Publication date: March 15, 2018
    Inventors: Xingtao Gao, Christopher R. Castellano, Brendan Patrick Dowd
  • Publication number: 20170001179
    Abstract: A zeolite-containing fixed bed catalyst is formed by pre-shaping a mixture of a reactive aluminum-containing component and a matrix component into pre-shaped particles, and contacting the pre-shaped particles with a reactive liquid containing a silicate for a sufficient time and temperature to form an in-situ zeolite within the pre-shaped particles. The contacting of the pre-shaped particles and the liquid is achieved such that there is relative movement between the pre-shaped particles and the liquid.
    Type: Application
    Filed: September 2, 2016
    Publication date: January 5, 2017
    Inventors: Xingtao Gao, David Stockwell, Gary M. Smith
  • Patent number: 9433934
    Abstract: A zeolite-containing fixed bed catalyst is formed by pre-shaping a mixture of a reactive aluminum-containing component and a matrix component into pre-shaped particles, and contacting the pre-shaped particles with a reactive liquid containing a silicate for a sufficient time and temperature to form an in-situ zeolite within the pre-shaped particles. The contacting of the pre-shaped particles and the liquid is achieved such that there is relative movement between the pre-shaped particles and the liquid.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: September 6, 2016
    Assignee: BASF Corporation
    Inventors: Xingtao Gao, David Stockwell, Gary M. Smith
  • Publication number: 20140206526
    Abstract: A catalytic additive comprising an intermediate pore zeolite, such as ZSM-5 is treated so as to improve propylene yields when the additive is included in a FCC catalytic inventory by first treating the zeolite with a phosphorus compound to incorporate the phosphorus in the zeolite, and mixing the P-treated zeolite with a matrix component comprising kaolin and another phosphorus-containing compound.
    Type: Application
    Filed: January 23, 2014
    Publication date: July 24, 2014
    Applicant: BASF Corporation
    Inventors: Xingtao Gao, David Hamilton Harris
  • Publication number: 20130252802
    Abstract: A zeolite-containing fixed bed catalyst is formed by pre-shaping a mixture of a reactive aluminum-containing component and a matrix component into pre-shaped particles, and contacting the pre-shaped particles with a reactive liquid containing a silicate for a sufficient time and temperature to form an in-situ zeolite within the pre-shaped particles. The contacting of the pre-shaped particles and the liquid is achieved such that there is relative movement between the pre-shaped particles and the liquid.
    Type: Application
    Filed: May 22, 2013
    Publication date: September 26, 2013
    Applicant: BASF Corporation
    Inventors: Xingtao Gao, David Stockwell, Gary M. Smith
  • Patent number: 8449762
    Abstract: A sulfur reduction catalyst useful to reduce the levels of sulfur in a cracked gasoline product comprises a metal vanadate compound. The metal vanadate compound can be supported on a molecular sieve such as a zeolite in which the metal vanadate compound is primarily located on the exterior surface of the pore structure of the zeolite and on the surface of any matrix material used to bind or support the zeolite.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: May 28, 2013
    Assignee: BASF Corporation
    Inventors: Xingtao Gao, James Fu