Patents by Inventor Xinning Hu

Xinning Hu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8570127
    Abstract: A high magnetic field superconducting magnet system with large crossing warm bore is disclosed, a superconducting coil thereof includes a low temperature superconducting coil and a high temperature superconducting coil. The superconducting coils are connected to a thermal shield and a flange of a low temperature container by a supporting drawbar, thus the superconducting coils as a whole are supported inside the low temperature container. A thermal switch is connected to a primary cold head and a secondary cold head of the cryocooler. The secondary cold head of the cryocooler is connected to a magnet-reinforced supporting flange at the two ends of the low temperature superconducting coil and the high temperature superconducting coil by a cold conduction strip. The superconducting magnet system has a room temperature bore in horizontal direction and a room temperature bore in vertical direction.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: October 29, 2013
    Assignee: Institute of Electrical Engineering, Chinese Academy of Sciences
    Inventors: Qiuliang Wang, Xinning Hu, Yinming Dai, Baozhi Zhao, Luguang Yan, Shousen Song, Housheng Wang, Yuanzhong Lei, Hui Wang
  • Publication number: 20130184158
    Abstract: A superconducting magnet system for nuclear magnetic resonance with a high magnetic field and a high degree of homogeneity of magnetic field is provided. The system comprises a main coil and a magnetic field homogeneity compensating coil having a combination of a forward current and a reverse current, and is composed of 24 superconducting coils formed by winding NbTi/Cu low-temperature superconducting wires. The system can produce a magnetic field of 9.4 T within a room-temperature space of 800 mm and can obtain a degree of non-homogeneity of magnetic field less than 0.1 ppm within a spherical volume of 300 mm. The system is equipped with a superconducting magnet inside, and a low-temperature vessel for liquid helium provides a low-temperature environment of 4K which is required for the normal operation of the superconducting magnet. A ferro-magnetic shielding system enables the system to have a good electromagnetic compatibility.
    Type: Application
    Filed: March 3, 2011
    Publication date: July 18, 2013
    Applicant: Institute of Electrical Engineering, Chinese Acade my of Sciences
    Inventors: Qiuliang Wang, Yinming Dai, Baozhi Zhao, Xinning Hu, Luguang Yan, Housheng Wang, Shunzhong Chen
  • Publication number: 20130033346
    Abstract: A high magnetic field superconducting magnet system with large crossing warm bore is disclosed, a superconducting coil thereof includes a low temperature superconducting coil and a high temperature superconducting coil. The superconducting coils are connected to a thermal shield and a flange of a low temperature container by a supporting drawbar, thus the superconducting coils as a whole are supported inside the low temperature container. A thermal switch is connected to a primary cold head and a secondary cold head of the cryocooler. The secondary cold head of the cryocooler is connected to a magnet-reinforced supporting flange at the two ends of the low temperature superconducting coil and the high temperature superconducting coil by a cold conduction strip. The superconducting magnet system has a room temperature bore in horizontal direction and a room temperature bore in vertical direction.
    Type: Application
    Filed: July 1, 2010
    Publication date: February 7, 2013
    Applicant: Institute of Electrical Engineering, Chinese Academy of Sciences
    Inventors: Qiuliang Wang, Xinning Hu, Yinming Dai, Baozhi Zhao, Luguang Yan, Shousen Song, Housheng Wang, Yuanzhong Lei, Hui Wang
  • Publication number: 20130008018
    Abstract: A low resistance superconducting joint with high shielding characteristics, manufactured by: corroding copper on the outer surface at the end of a NbTi/Cu superconducting wire to form terminal NbTi superconducting filaments; inserting same number of NbTi superconducting filaments into each through hole of the niobium layer of a Nb/NbTi/Cu multilayer composite rod; pressing at the outside of the Nb/NbTi/Cu multilayer composite rod to combine the Nb/NbTi/Cu multilayer composite rod and NbTi superconducting filaments together to form a joint; and inserting the joint into a YBCO tube, and then filling the YBCO tube with molten bismuth-lead-tin-cadmium (BiPbSnCd) alloy solder to form a superconducting joint with high shielding and low resistance characteristics.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 10, 2013
    Applicant: Institute of Electrical Engineering, Chinese Academy of Sciences
    Inventors: Qiuliang Wang, Xinning Hu, Shousen Song, Lijian Ding, Luguang Yan
  • Publication number: 20120289406
    Abstract: A superconducting magnet system for high power microwave source focusing and cyclotron electronic apparatus is provided, wherein, the superconducting magnet comprises an inner superconducting main coil, an outer superconducting main coil, two end compensation coils, a regulating coil and a central regulating coil. These coils are formed by coiling Nb3Sn/Cu superconducting wire. The superconducting magnet can operate off-line through solid nitrogen formed by a cryocooler and high-pressure nitrogen. The superconducting magnet and the superconducting switch constitute a closed loop, thereby achieving magnetic field stability, without outside electromagnetic interference. The superconducting magnet system can provide a magnetic field having special spatial distribution and high stability.
    Type: Application
    Filed: July 14, 2010
    Publication date: November 15, 2012
    Applicant: INSTITUTE OF ELECTRICAL ENGINEERING CHINESE ACADEMY OF SCIENCES
    Inventors: Qiuliang Wang, Xinning Hu, Luguang Yan, Yinming Dai, Hui Wang
  • Patent number: 8204563
    Abstract: A superconducting magnet system for generating high homogeneity and high magnetic field consists of a main coil, an outer coil, a quench protection circuit, a quench heater and a power supply. The main coil is composed of many concentric solenoid coils which are arranged from inside to outside. The outer coil out of the main coil includes a first back roll coil, a second back roll coil, a first superconducting coil for compensating sixth harmonic component, a second superconducting coil for compensating sixth harmonic component, a shielding ring and a shielding coil from inside to outside. Every loop circuit of the quench protection circuit is composed of a corresponding protection resistor, a diode and coil which is connected in series each other, and each coil has a corresponding quench protection heater. The classification linear diameter difference of the superconducting coils which contact each other in main coil is less than 0.05 mm.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: June 19, 2012
    Assignee: Institute of Electrical Engineering, Chinese Academy of Sciences
    Inventors: Qiuliang Wang, Xinning Hu
  • Publication number: 20110082043
    Abstract: A superconducting magnet system for generating high homogeneity and high magnetic field consists of a main coil, an outer coil, a quench protection circuit, a quench heater and a power supply. The main coil is composed of many concentric solenoid coils which are arranged from inside to outside. The outer coil out of the main coil includes a first back roll coil, a second back roll coil, a first superconducting coil for compensating sixth harmonic component, a second superconducting coil for compensating sixth harmonic component, a shielding ring and a shielding coil from inside to outside. Every loop circuit of the quench protection circuit is composed of a corresponding protection resistor, a diode and coil which is connected in series each other, and each coil has a corresponding quench protection heater. The classification linear diameter difference of the superconducting coils which contact each other in main coil is less than 0.05 mm.
    Type: Application
    Filed: January 20, 2009
    Publication date: April 7, 2011
    Applicant: Institute of Electrical Engineering, Chinese Academy of Sciences
    Inventors: Qiuliang Wang, Xinning Hu