Patents by Inventor Xinyan Yan

Xinyan Yan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230340652
    Abstract: This disclosure provides an aging process or a method for aging aluminum alloys. For example, the aging process can be performed on 6xxx Al-Si-Mg-Cu aluminum alloys to result in production of such alloys with improved intergranular corrosion (IGC) resistance. The disclosed aging process includes subjecting a solution heat treated and quenched 6xxx aluminum alloy to a temperature above an aging hardening temperature of said alloy but below the solution heat treatment temperature for a short period of time, and then subjecting said alloy to an aging heat treatment at an aging hardening temperature.
    Type: Application
    Filed: April 26, 2023
    Publication date: October 26, 2023
    Applicant: ALCOA USA CORP.
    Inventors: Xinyan YAN, Francis CARON, Guy LALIBERTE
  • Patent number: 11697151
    Abstract: New shape-cast 7xx aluminum alloys products are disclosed. The new shape-cast products may include from 3.0 to 8.0 wt. % Zn, from 1.0 to 3.0 wt. % Mg, where the wt. % Zn exceeds the wt. % Mg, from 0.35 to 1.0 wt. % Cu, where the wt. % Mg exceeds the wt. % Cu, from 0.05 to 0.30 wt. % V, from 0.01 to 1.0 wt. % of at least one secondary element (Mn, Cr, Zr, Ti, B, and combinations thereof), up to 0.50 wt. % Fe, and up to 0.25 wt. % Si, the balance being aluminum and other elements, wherein the aluminum casting alloy include not greater than 0.05 wt. % each of the other elements, and wherein the aluminum casting alloy includes not greater than 0.15 wt. % in total of the other elements.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: July 11, 2023
    Assignee: ALCOA USA CORP.
    Inventors: Xinyan Yan, Eider Simielli, Jen C. Lin, Wenping Zhang, James Daniel Bryant
  • Publication number: 20230099382
    Abstract: New aluminum casting (foundry) alloys are disclosed. The new aluminum casting alloys may include from 6.0 to 11.5 wt. % Si, from 0.30 to 0.80 wt. % Fe, optionally from 0.07 to 0.20 wt. % of X, wherein X is selected from the group consisting of Mg, Mo, Zr, and combinations thereof, and optionally 100-500 ppm Sr, the balance being aluminum and unavoidable impurities. The new aluminum casting alloys may be high-pressure die cast into complex shapes. The new aluminum casting alloys may be useful, for instance, in heat sink/antenna applications.
    Type: Application
    Filed: November 29, 2022
    Publication date: March 30, 2023
    Inventor: Xinyan Yan
  • Publication number: 20230068164
    Abstract: New 3xx aluminum casting alloys are disclosed. The aluminum casting alloys generally include from 6.5 to 11.0 wt. % Si, from 0.20 to 0.80 wt. % Mg, from 0.05 to 0.50 wt. % Cu, from 0.10 to 0.80 wt. % Mn, from 0.005 to 0.05 wt. % Sr, up to 0.25 wt. % Ti, up to 0.30 wt. % Fe, and up to 0.20 wt. % Zn, the balance being aluminum and impurities.
    Type: Application
    Filed: October 17, 2022
    Publication date: March 2, 2023
    Inventors: Xinyan Yan, Jen C. Lin
  • Patent number: 11584977
    Abstract: New 3xx aluminum casting alloys are disclosed. The aluminum casting alloys generally include from 6.5 to 11.0 wt. % Si, from 0.20 to 0.80 wt. % Mg, from 0.05 to 0.50 wt. % Cu, from 0.10 to 0.80 wt. % Mn, from 0.005 to 0.05 wt. % Sr, up to 0.25 wt. % Ti, up to 0.30 wt. % Fe, and up to 0.20 wt. % Zn, the balance being aluminum and impurities.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: February 21, 2023
    Assignee: ALCOA USA CORP.
    Inventors: Xinyan Yan, Jen C. Lin
  • Publication number: 20230024665
    Abstract: Some embodiments of the present disclosure relate to a 6xxx aluminum alloy having: silicon (Si) in an amount of 0.70 wt % to 1.1 wt % based on a total weight of the 6xxx aluminum alloy; magnesium (Mg) in an amount of 0.75 wt % to 1.15 wt % based on the total weight of the 6xxx aluminum alloy; a weight ratio of Mg to Si in the 6xxx aluminum alloy from 0.68:1.0 to 1.65:1.0; and copper (Cu) in an amount of 0.30 wt % to 0.8 wt % based on the total weight of the 6xxx aluminum alloy. Some embodiments of the present disclosure further relate to a method including steps of: casting an exemplary 6xxx aluminum alloy, homogenizing the exemplary 6xxx aluminum alloy; extruding the exemplary 6xxx aluminum alloy; and aging the 6xxx aluminum alloy.
    Type: Application
    Filed: December 22, 2020
    Publication date: January 26, 2023
    Inventors: Xinyan Yan, Francis Caron
  • Patent number: 11103919
    Abstract: New 7xx aluminum casting alloys are disclosed. The aluminum casting alloys generally include from 3.0 to 8.0 wt. % Zn, from 1.0 to 3.0 wt. % Mg, where the wt. % Zn exceeds the wt. % Mg, from 0.35 to 1.0 wt. % Cu, where the wt. % Mg exceeds the wt. % Cu, from 0.05 to 0.30 wt. % V, from 0.01 to 1.0 wt. % of at least one secondary element (Mn, Cr, Zr, Ti, B, and combinations thereof), up to 0.50 wt. % Fe, and up to 0.25 wt. % Si, the balance being aluminum and other elements, wherein the aluminum casting alloy include not greater than 0.05 wt. % each of the other elements, and wherein the aluminum casting alloy includes not greater than 0.15 wt. % in total of the other elements.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: August 31, 2021
    Assignee: ALCOA USA CORP.
    Inventors: Xinyan Yan, Eider Simielli, Jen C. Lin, Wenping Zhang, James Daniel Bryant
  • Publication number: 20200384529
    Abstract: New shape-cast 7xx aluminum alloys products are disclosed. The new shape-cast products may include from 3.0 to 8.0 wt. % Zn, from 1.0 to 3.0 wt. % Mg, where the wt. % Zn exceeds the wt. % Mg, from 0.35 to 1.0 wt. % Cu, where the wt. % Mg exceeds the wt. % Cu, from 0.05 to 0.30 wt. % V, from 0.01 to 1.0 wt. % of at least one secondary element (Mn, Cr, Zr, Ti, B, and combinations thereof), up to 0.50 wt. % Fe, and up to 0.25 wt. % Si, the balance being aluminum and other elements, wherein the aluminum casting alloy include not greater than 0.05 wt. % each of the other elements, and wherein the aluminum casting alloy includes not greater than 0.15 wt. % in total of the other elements.
    Type: Application
    Filed: August 24, 2020
    Publication date: December 10, 2020
    Inventors: Xinyan Yan, Eider Simielli, Jen C. Lin, Wenping Zhang, James Daniel Bryant
  • Publication number: 20190352745
    Abstract: New aluminum casting (foundry) alloys are disclosed. The new aluminum casting alloys generally include from 2.5 to 5.0 wt. % Mg, from 0.70 to 2.5 wt. % Si, wherein the ratio of Mg/Si (in weight percent) is from 1.7 to 3.6, from 0.40 to 1.50 wt. % Mn, from 0.15 to 0.60 wt. % Fe, optionally up to 0.15 wt. % Ti, optionally up to 0.10 wt. % Sr, optionally up to 0.15 wt. % of any of Zr, Sc, Hf, V, and Cr, the balance being aluminum and unavoidable impurities. The new aluminum casting alloys may be high pressure die cast, such as into automotive components. The new aluminum alloys may be supplied in an F or a T5 temper, for instance.
    Type: Application
    Filed: May 7, 2019
    Publication date: November 21, 2019
    Inventor: Xinyan Yan
  • Patent number: 10480051
    Abstract: The present disclosure relates to new materials comprising Al, Co, Fe, and Ni. The new materials may realize a single phase field of a face-centered cubic (fcc) solid solution structure immediately below the solidus temperature of the material. The new materials may include at least one precipitate phase and have a solvus temperature of at least 1000° C. The new materials may include 4.4-11.4 wt. % Al, 4.9-42.2 wt. % Co, 4.6-28.9 wt. % Fe, and 44.1-86.1 wt. % Ni. In one embodiment, the precipitate is selected from the group consisting of the L12 phase, the B2 phase, and combinations thereof. The new alloys may realize improved high temperature properties.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: November 19, 2019
    Assignee: ARCONIC INC.
    Inventors: Jen Lin, Xinyan Yan
  • Publication number: 20190169718
    Abstract: The present disclosure relates to new materials comprising Al, Co, Fe, and Ni. The new materials may realize a single phase field of a face-centered cubic (fcc) solid solution structure immediately below the solidus temperature of the material. The new materials may include at least one precipitate phase and have a solvus temperature of at least 1000° C. The new materials may include 4.4-11.4 wt. % Al, 4.9-42.2 wt. % Co, 4.6-28.9 wt. % Fe, and 44.1-86.1 wt. % Ni. In one embodiment, the precipitate is selected from the group consisting of the L12 phase, the B2 phase, and combinations thereof. The new alloys may realize improved high temperature properties.
    Type: Application
    Filed: February 5, 2019
    Publication date: June 6, 2019
    Inventors: Jen Lin, Xinyan Yan
  • Publication number: 20190136342
    Abstract: The present disclosure relates to methods of producing purified aluminum alloys from aluminum alloy scrap by producing a melt of the aluminum alloy scrap, adding one or more intermetallic former materials, producing iron-bearing intermetallic particles, removing the iron-bearing intermetallic particles, and solidifying the low-iron melt.
    Type: Application
    Filed: December 28, 2018
    Publication date: May 9, 2019
    Inventors: Xinyan Yan, Francis Caron
  • Patent number: 10227679
    Abstract: New aluminum casting alloys having 8.5-9.5 wt. % silicon, 0.8-2.0 wt. % copper (Cu), 0.20-0.53 wt. % magnesium (Mg), and 0.35 to 0.8 wt. % manganese are disclosed. The alloy may be solution heat treated, treated in accordance with T5 tempering and/or artificially aged to produce castings, e.g., for cylinder heads and engine blocks. In one embodiment, the castings are made by high pressure die casting.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: March 12, 2019
    Assignee: ALCOA USA CORP.
    Inventors: Xinyan Yan, Jen C. Lin
  • Patent number: 10202673
    Abstract: The present disclosure relates to new materials comprising Al, Co, Fe, and Ni. The new materials may realize a single phase field of a face-centered cubic (fcc) solid solution structure immediately below the solidus temperature of the material. The new materials may include at least one precipitate phase and have a solvus temperature of at least 1000° C. The new materials may include 4.4-11.4 wt. % Al, 4.9-42.2 wt. % Co, 4.6-28.9 wt. % Fe, and 44.1-86.1 wt. % Ni. In one embodiment, the precipitate is selected from the group consisting of the L12 phase, the B2 phase, and combinations thereof. The new alloys may realize improved high temperature properties.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: February 12, 2019
    Assignee: ARCONIC INC.
    Inventors: Jen Lin, Xinyan Yan
  • Patent number: 10174409
    Abstract: An aluminum casting alloy has 8.5-9.5 wt. % silicon, 0.5-2.0 wt. % copper (Cu), 0.27-0.53 wt. % magnesium (Mg), wherein the aluminum casting alloy includes copper and magnesium such that 4.7?(Cu+10Mg)?5.8, and other elements, the balance being aluminum. Selected elements may be added to the base composition to give resistance to degradation of tensile properties due to exposure to heat. The thermal treatment of the alloy is calculated based upon wt. % composition to solutionize unwanted phases having a negative impact on properties and may include a three level ramp-up and soak to a final temperature followed by cold water quenching and artificial aging.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: January 8, 2019
    Assignee: ALCOA USA CORP.
    Inventors: Xinyan Yan, Jen C. Lin
  • Patent number: 10161021
    Abstract: The present disclosure relates to new materials comprising Al, Co, and Ni. The new materials may realize a single phase field of a face-centered cubic (fcc) solid solution structure immediately below the solidus temperature of the material. The new materials may include at least one precipitate phase and have a solvus temperature of at least 1000° C. The new materials may include 6.7-11.4 wt. % Al, 5.0-48.0 wt. % Co, and 43.9-88.3 wt. % Ni. In one embodiment, the precipitate is selected from the group consisting of the L12 phase, the B2 phase, and combinations thereof. The new alloys may realize improved high temperature properties.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: December 25, 2018
    Assignee: ARCONIC INC.
    Inventors: Jen Lin, Xinyan Yan
  • Publication number: 20180171438
    Abstract: New 3xx aluminum casting alloys are disclosed. The aluminum casting alloys generally include from 6.5 to 11.0 wt. % Si, from 0.20 to 0.80 wt. % Mg, from 0.05 to 0.50 wt. % Cu, from 0.10 to 0.80 wt. % Mn, from 0.005 to 0.05 wt. % Sr, up to 0.25 wt. % Ti, up to 0.30 wt. % Fe, and up to 0.20 wt. % Zn, the balance being aluminum and impurities.
    Type: Application
    Filed: February 13, 2018
    Publication date: June 21, 2018
    Inventors: Xinyan Yan, Jen C. Lin
  • Publication number: 20180112296
    Abstract: The present disclosure relates to methods of producing heat-treatable as-cast plate, and products based on the same. Generally, the new methods comprise continuously delivering a molten aluminum alloy having at least one of zinc (Zn), magnesium (Mg), silicon (Si), and copper (Cu) to a molten belt caster, continuously solidifying the molten aluminum alloy into an aluminum alloy plate via the horizontal belt caster, then continuously discharging the aluminum alloy plate at an exit of the horizontal belt caster, and then quenching the discharged aluminum alloy plate via a quenching apparatus located proximal the exit of the horizontal belt caster.
    Type: Application
    Filed: October 24, 2017
    Publication date: April 26, 2018
    Inventors: James Daniel Bryant, Xinyan Yan, Adam Schaut
  • Publication number: 20170306449
    Abstract: New beta-style (bcc) titanium alloys are disclosed. The new alloys generally include 2.0-6.0 wt. % Al, 4.0-12.0 wt. % V, and 1.0-5.0 wt. % Fe, the balance being titanium, any optional incidental elements, and unavoidable impurities. The new alloys may realize an improved combination of properties as compared to conventional titanium alloys.
    Type: Application
    Filed: April 25, 2017
    Publication date: October 26, 2017
    Inventors: Jen C. Lin, Xinyan Yan, Joseph C. Sabol, David W. Heard, Faramarz MH Zarandi, Severine Cambier, Fusheng Sun, Ernest M. Crist, JR., Sesh A. Tamirisakandala
  • Publication number: 20170306458
    Abstract: The present disclosure relates to new materials comprising Al, Co, Fe, and Ni. The new materials may realize a single phase field of a face-centered cubic (fcc) solid solution structure immediately below the solidus temperature of the material. The new materials may include at least one precipitate phase and have a solvus temperature of at least 1000° C. The new materials may include 4.4-11.4 wt. % Al, 4.9-42.2 wt. % Co, 4.6-28.9 wt. % Fe, and 44.1-86.1 wt. % Ni. In one embodiment, the precipitate is selected from the group consisting of the L12 phase, the B2 phase, and combinations thereof. The new alloys may realize improved high temperature properties.
    Type: Application
    Filed: April 20, 2017
    Publication date: October 26, 2017
    Inventors: Jen Lin, Xinyan Yan