Patents by Inventor Xinyu Fu

Xinyu Fu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240153428
    Abstract: A pixel circuit and a driving method therefor, a display substrate, and a display apparatus. The pixel circuit includes a driving sub circuit, a data writing sub circuit, a first light-emitting control sub circuit, a first reset sub circuit, and a bias sub circuit; the first reset sub circuit is connected to a first node and configured to write a first reset voltage to the first node in response to a first reset control signal; and the bias sub circuit is connected to a second node and configured to write a reference voltage to the second node in response to a bias control signal, thereby turning on the driving sub circuit.
    Type: Application
    Filed: July 8, 2022
    Publication date: May 9, 2024
    Applicants: Chengdu BOE Optoelectronics Technology Co., Ltd., BOE Technology Group Co., Ltd.
    Inventors: Xinyu Wei, Kai Zhang, Qiang Fu, Gang Wang, Erlong Song, Hongmei Fan, Kunyan Shi
  • Patent number: 11970869
    Abstract: The invention relates to the technical field of pump truck control, and discloses a pump truck boom control method, a pump truck boom control system and a pump truck. The pump truck boom control method comprises: detecting a working condition of a boom, wherein the boom is divided into first-type arms close to the first arm and second-type arms close to the last arm in advance; and controlling each arm in the first-type arms to act at respective preset movement speed when the boom is in an opening placing boom working condition before the construction or in a folding placing boom working condition after the construction. The method can realize speed-up control on movement speeds of the each arm in the first-type arms under the opening placing boom working condition before the construction or under the folding placing boom working condition after the construction without a boom posture detection sensors.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: April 30, 2024
    Assignee: ZOOMLION HEAVY INDUSTRY SCIENCE AND TECHNOLOGY CO., LTD.
    Inventors: Liang Wu, Jun Yin, Ze Chen, Liang Wan, Xinyu Fu
  • Publication number: 20240135872
    Abstract: In the pixel circuit, the data writing-in circuit is configured to control to connect the data line and the second terminal of the driving circuit under the control of a first scanning signal provided by the first scanning line; the compensation control circuit is configured to control to connect the first terminal of the driving circuit and the connection node under the control of a second scanning signal provided by the second scanning line; the first control circuit is configured to control to connect the control terminal of the driving circuit and the connection node under the control of the first scanning signal.
    Type: Application
    Filed: July 12, 2022
    Publication date: April 25, 2024
    Applicants: CHENGDU BOE OPTOELECTRONICS TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Gang WANG, Kai ZHANG, Xinyu WEI, Qiang FU, Xingrui CAI
  • Patent number: 11954654
    Abstract: Disclosed is an automatic identification and classification production line for waste mobile phones and a classification method of waste mobile phones.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: April 9, 2024
    Assignee: Hefei University of Technology
    Inventors: Xinyu Li, Yonggang Fu, Huaxing Yu, Wenxing Zhai, Pengshuai Bian
  • Patent number: 11887855
    Abstract: Provided are atomic layer deposition methods to deposit a tungsten film or tungsten-containing film using a tungsten-containing reactive gas comprising one or more of tungsten pentachloride, a compound with the empirical formula WCl5 or WCl6.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: January 30, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xinyu Fu, Srinivas Gandikota, Avgerinos V. Gelatos, Atif Noori, Mei Chang, David Thompson, Steve G. Ghanayem
  • Publication number: 20220348443
    Abstract: The present invention relates to the field of engineering machinery, and discloses a method and an apparatus for judging the safety of an operation which may be performed by a boom and an engineering machinery, the method including: acquiring parameters for each arm in the boom, wherein the parameters comprise an inclination angle, an arm length, and mass; determining, based on the acquired parameters, a position of the full center of mass of the boom and a position of the combined center of mass from an operating arm to a terminal arm; determining a safety judging basis direction vector based on the position of the full center of mass and the position of the combined center of mass; and judging the safety of an operation which may be performed on the operating arm based on the safety judging basis direction vector.
    Type: Application
    Filed: June 3, 2020
    Publication date: November 3, 2022
    Applicant: ZOOMLION HEAVY INDUSTRY SCIENCE AND TECHNOLOGY CO., LTD.
    Inventors: Zhongwei ZENG, Yibiao NIE, Xinyu FU, Qiyang LI
  • Publication number: 20210293038
    Abstract: The invention relates to the technical field of pump truck control, and discloses a pump truck boom control method, a pump truck boom control system and a pump truck. The pump truck boom control method comprises: detecting a working condition of a boom, wherein the boom is divided into first-type arms close to the first arm and second-type arms close to the last arm in advance; and controlling each arm in the first-type arms to act at respective preset movement speed when the boom is in an opening placing boom working condition before the construction or in a folding placing boom working condition after the construction. The method can realize speed-up control on movement speeds of the each arm in the first-type arms under the opening placing boom working condition before the construction or under the folding placing boom working condition after the construction without a boom posture detection sensors.
    Type: Application
    Filed: July 11, 2019
    Publication date: September 23, 2021
    Applicant: ZOOMLION HEAVY INDUSTRY SCIENCE AND TECHNOLOGY CO., LTD
    Inventors: Liang Wu, Jun Yin, Ze Chen, Liang Wan, Xinyu Fu
  • Publication number: 20210225655
    Abstract: Provided are atomic layer deposition methods to deposit a tungsten film or tungsten-containing film using a tungsten-containing reactive gas comprising one or more of tungsten pentachloride, a compound with the empirical formula WCl5 or WCl6.
    Type: Application
    Filed: April 6, 2021
    Publication date: July 22, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Xinyu Fu, Srinivas Gandikota, Avgerinos V. Gelatos, Atif Noori, Mei Chang, David Thompson, Steve G. Ghanayem
  • Patent number: 10985023
    Abstract: Provided are atomic layer deposition methods to deposit a tungsten film or tungsten-containing film using a tungsten-containing reactive gas comprising one or more of tungsten pentachloride, a compound with the empirical formula WCl5 or WCl6.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: April 20, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xinyu Fu, Srinivas Gandikota, Avgerinos V. Gelatos, Atif Noori, Mei Chang, David Thompson, Steve G. Ghanayem
  • Patent number: 10718049
    Abstract: Apparatus for improved particle reduction are provided herein. In some embodiments, an apparatus may include a process kit shield comprising a one-piece metal body having an upper portion and a lower portion and having an opening disposed through the one-piece metal body, wherein the upper portion includes an opening-facing surface configured to be disposed about and spaced apart from a target of a physical vapor deposition chamber and wherein the opening-facing surface is configured to limit particle deposition on an upper surface of the upper portion of the one-piece metal body during sputtering of a target material from the target of the physical vapor deposition chamber.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: July 21, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Muhammad Rasheed, Rongjun Wang, Zhendong Liu, Xinyu Fu, Xianmin Tang
  • Patent number: 10699946
    Abstract: Methods for depositing a metal layer in a feature definition of a semiconductor device are provided. In one implementation, a method for depositing a metal layer for forming a semiconductor device is provided. The method comprises performing a cyclic metal deposition process to deposit a metal layer on a substrate and annealing the metal layer disposed on the substrate. The cyclic metal deposition process comprises exposing the substrate to a deposition precursor gas mixture to deposit a portion of the metal layer on the substrate, exposing the portion of the metal layer to either a plasma treatment process or hydrogen annealing process and repeating the exposing the substrate to a deposition precursor gas mixture and exposing the portion of the metal layer to either a plasma treatment process or hydrogen annealing process until a predetermined thickness of the metal layer is achieved.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: June 30, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bhushan N. Zope, Avgerinos V. Gelatos, Bo Zheng, Yu Lei, Xinyu Fu, Srinivas Gandikota, Sang Ho Yu, Mathew Abraham
  • Patent number: 10483116
    Abstract: Processing methods comprising exposing a substrate to an optional nucleation promoter followed by sequential exposure of a first reactive gas comprising a metal oxyhalide compound and a second reactive gas to form a metal film on the substrate.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: November 19, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Xinyu Fu, David Knapp, David Thompson, Jeffrey W. Anthis, Mei Chang
  • Patent number: 10269633
    Abstract: Methods for depositing a contact metal layer in contact structures of a semiconductor device are provided. In one embodiment, a method for depositing a contact metal layer for forming a contact structure in a semiconductor device is provided. The method comprises performing a cyclic metal deposition process to deposit a contact metal layer on a substrate and annealing the contact metal layer disposed on the substrate. The cyclic metal deposition process comprises exposing the substrate to a deposition precursor gas mixture to deposit a portion of the contact metal layer on the substrate, exposing the portion of the contact metal layer to a plasma treatment process, and repeating the exposing the substrate to a deposition precursor gas mixture and exposing the portion of the contact metal layer to a plasma treatment process until a predetermined thickness of the contact metal layer is achieved.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: April 23, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bhushan N. Zope, Avgerinos V. Gelatos, Bo Zheng, Yu Lei, Xinyu Fu, Srinivas Gandikota, Sang-Ho Yu, Mathew Abraham
  • Publication number: 20190088489
    Abstract: Processing methods comprising exposing a substrate to an optional nucleation promoter followed by sequential exposure of a first reactive gas comprising a metal oxyhalide compound and a second reactive gas to form a metal film on the substrate.
    Type: Application
    Filed: November 5, 2018
    Publication date: March 21, 2019
    Inventors: Xinyu Fu, David Knapp, David Thompson, Jeffrey W. Anthis, Mei Chang
  • Patent number: 10199230
    Abstract: Methods for selectively depositing a metal silicide layer are provided herein.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: February 5, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Seshadri Ganguli, Yixiong Yang, Bhushan N. Zope, Xinyu Fu, Avgerinos V. Gelatos, Guoqiang Jian, Bo Zheng
  • Patent number: 10121671
    Abstract: Processing methods comprising exposing a substrate to an optional nucleation promoter followed by sequential exposure of a first reactive gas comprising a metal oxyhalide compound and a second reactive gas to form a metal film on the substrate.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: November 6, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xinyu Fu, David Knapp, David Thompson, Jeffrey W. Anthis, Mei Chang
  • Patent number: 10043709
    Abstract: Methods for selectively depositing a cobalt layer are provided herein. In some embodiments, methods for selectively depositing a cobalt layer include: exposing a substrate to a first process gas to passivate an exposed dielectric surface, wherein the substrate comprises a dielectric layer having an exposed dielectric surface and a metal layer having an exposed metal surface; and selectively depositing a cobalt layer atop the exposed metal surface using a thermal deposition process.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: August 7, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Hua Ai, Jiang Lu, Avgerinos V. Gelatos, Paul F. Ma, Sang Ho Yu, Feng Q. Liu, Xinyu Fu, Weifeng Ye
  • Patent number: 9947578
    Abstract: Methods for forming metal contacts having tungsten liner layers are provided herein. In some embodiments, a method of processing a substrate includes: exposing a substrate, within a first substrate process chamber, to a plasma formed from a first gas comprising a metal organic tungsten precursor gas or a fluorine-free tungsten halide precursor to deposit a tungsten liner layer, wherein the tungsten liner layer is deposited atop a dielectric layer and within a feature formed in a first surface of the dielectric layer of a substrate; transferring the substrate to a second substrate process chamber without exposing the substrate to atmosphere; and exposing the substrate to a second gas comprising a tungsten fluoride precursor to deposit a tungsten fill layer atop the tungsten liner layer.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: April 17, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Yu Lei, Vikash Banthia, Kai Wu, Xinyu Fu, Yi Xu, Kazuya Daito, Feiyue Ma, Pulkit Agarwal, Chi-Chou Lin, Dien-Yeh Wu, Guoqiang Jian, Wei V. Tang, Jonathan Bakke, Mei Chang, Sundar Ramamurthy
  • Publication number: 20180087147
    Abstract: Apparatus for improved particle reduction are provided herein. In some embodiments, an apparatus may include a process kit shield comprising a one-piece metal body having an upper portion and a lower portion and having an opening disposed through the one-piece metal body, wherein the upper portion includes an opening-facing surface configured to be disposed about and spaced apart from a target of a physical vapor deposition chamber and wherein the opening-facing surface is configured to limit particle deposition on an upper surface of the upper portion of the one-piece metal body during sputtering of a target material from the target of the physical vapor deposition chamber.
    Type: Application
    Filed: December 4, 2017
    Publication date: March 29, 2018
    Inventors: MUHAMMAD RASHEED, RONGJUN WANG, ZHENDONG LIU, XINYU FU, XIANMIN TANG
  • Patent number: 9922872
    Abstract: Processing methods comprising exposing a substrate to a nucleation promoter followed by sequential exposure of a first reactive gas comprising a metal-containing compound and a second reactive gas to form a metal-containing film on the substrate.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: March 20, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: David Knapp, Jeffrey W. Anthis, Xinyu Fu, Srinivas Gandikota