Patents by Inventor Xirui Wang

Xirui Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240118150
    Abstract: The present disclosure provides a method for testing an internal force increment of an arch bridge suspender by inertial measurement, including the following steps: (1) selecting a suspender to be tested with internal force increment, and mounting an acceleration sensing device or a speed sensing device at a lower edge of the suspender to be tested; (2) setting an appropriate sampling frequency and collecting signals; (3) processing information data collected in step (2) by using Formulas; and (4) recording a result of the information data processing and obtaining the internal force increment of the suspender. The method can obtain the internal force increment of the suspender by collecting acceleration or speed signals of the lower edge of the suspender and performing calculation from the signals. This method has the advantages of simple and convenient testing, high replicability and low test cost.
    Type: Application
    Filed: October 8, 2021
    Publication date: April 11, 2024
    Inventors: Hua Wang, Longlin Wang, Tianzhi Hao, Zehua Xie, Mengsheng Yu, Xiaoli Zhuo, Yuhou Yang, Jiejun Ning, Xirui Wang, Xi Peng, Kainan Huang, Junhong Wu
  • Publication number: 20240003104
    Abstract: A fabricated rapid construction platform for a bridge, wherein the construction platform comprises a fixing frame, an upper-layer tubular pile position control structure (6), a lower-layer tubular pile position control structure (7), and a console; the fixing frame comprises a bottom rail platform (1), supporting posts (3), a top operation platform (2), and several supporting legs (4); the upper-layer tubular pile position control structure (6) and the lower-layer tubular pile position control structure (7) are provided between the bottom rail platform (1) and the top operation platform (2); the upper-layer tubular pile position control structure (6) comprises two sub-structures arranged symmetrically about the central axis of a second through hole, and each sub-structure comprises a braking device (61), a vertical control arm (63), and a horizontal control arm (62).
    Type: Application
    Filed: October 9, 2021
    Publication date: January 4, 2024
    Applicant: GUANGXI TRANSPORTATION SCIENCE AND TECHNOLOGY GROUP CO., LTD
    Inventors: Hua WANG, Longlin WANG, Xirui WANG, Tianzhi HAO, Gangrong WEI, Litao LI, Bo QIU, Jizhi LUO, Yuhou YANG, Shijian LIU, Mengsheng YU, Xiaoli ZHUO, Kainan HUANG, Jianheng CHEN, Zengke LI, Jipeng CHEN
  • Publication number: 20220152906
    Abstract: The present disclosure provides oriented multilayer films including a first layer, a second layer disposed on the first layer and a third layer disposed on the second layer, where the first layer and the third layer include a polyethylene independently selected from (i) a polyethylene having a density of about 0.94 g/cc or greater; (ii) a polyethylene copolymer including ethylene and a C4-C12 alpha-olefin and having a density 7 from about 0.927 g/cc to about 0.95 g/cc; or (iii) a mixture thereof, and at least one of the first layer or the third layer includes the polyethylene copolymer, the second layer includes a polyethylene composition having a density of about 0.91 g/cc or greater and the oriented multilayer film has a haze of about 10% or less and a 1% secant modulus in the direction of stretching of about 500 MPa or greater.
    Type: Application
    Filed: January 23, 2020
    Publication date: May 19, 2022
    Inventors: XiRui WANG, Etienne R.H. LERNOUX, Arash SARHANGI FARD, Chiao Kiat PEY
  • Publication number: 20210042822
    Abstract: Techniques are provided for testing policy modules for bias. Policy modules are software modules that generate lending decisions based on information about loan applicants. The techniques involve performing multiple testing iterations based on each test case. For example, in one iteration, values for all input parameters of the policy module may come from the test case. That iteration produces a “baseline” lending decision. During other iterations, the values for most input parameters do not change. However, for the one or more input parameters that correspond to the characteristic for which bias is being tested, the input values are changed from iteration to iteration. For example, when checking for age bias, the age of a loan applicant may be varied with each iteration. The lending decisions generated based on each test case are collectively referred to as a “sibling batch” of lending decisions.
    Type: Application
    Filed: August 5, 2019
    Publication date: February 11, 2021
    Inventors: Jianju Liu, Jianglan Han, Xirui Wang
  • Patent number: 9291758
    Abstract: Nanorods assemblies that have lengths in excess of 50 microns to meters are formed from contacting rice-shaped colloidal superparticles that are aligned along the long axis of the colloidal superparticles. The rice-shaped colloidal superparticles are formed from a multiplicity of nanorods with a high degree of association that is end to end to form colloidal superparticles that are in excess of three microns in length and have a length to diameter ratio of about three or more. Methods of preparing the rice-shaped colloidal superparticles employ mixing with an additional ligand to the nanorods to bias the self assembly of the nanorods by solvophobic interactions. Methods of preparing the nanorods assemblies include the infusion of the rice-shaped colloidal superparticles into microchannels patterned on a substrate, wherein the rice-shaped colloidal superparticles' long axes align in the microchannels.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: March 22, 2016
    Assignee: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Yunwei Charles Cao, Tie Wang, Xirui Wang
  • Publication number: 20140319563
    Abstract: Nanorods assemblies that have lengths in excess of 50 microns to meters are formed from contacting rice-shaped colloidal superparticles that are aligned along the long axis of the colloidal superparticles. The rice-shaped colloidal superparticles are formed from a multiplicity of nanorods with a high degree of association that is end to end to form colloidal superparticles that are in excess of three microns in length and have a length to diameter ratio of about three or more. Methods of preparing the rice-shaped colloidal superparticles employ mixing with an additional ligand to the nanorods to bias the self assembly of the nanorods by solvophobic interactions. Methods of preparing the nanorods assemblies include the infusion of the rice-shaped colloidal superparticles into microchannels patterned on a substrate, wherein the rice-shaped colloidal superparticles' long axes align in the microchannels.
    Type: Application
    Filed: December 16, 2013
    Publication date: October 30, 2014
    Applicant: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Yunwei Charles Cao, Tie Wang, Xirui Wang