Patents by Inventor Xiuhui Wang

Xiuhui Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240002243
    Abstract: The present invention provides a method for separation and recovery of boron trifluoride and complexes thereof in an olefin polymerization reaction.
    Type: Application
    Filed: October 27, 2021
    Publication date: January 4, 2024
    Inventors: Tong LIU, Yuanyuan CAO, Yulong WANG, Libo WANG, Xianming XU, Hongping LI, Enhao SUN, Xiuhui WANG, Wei SUN, Han GAO, Hongling CHU, Yongjun ZHANG, Yonggang JI, Kecun MA, Yan JIANG, Qian CHEN, Hongliang HUO, Qi YU
  • Publication number: 20230374169
    Abstract: The present disclosure discloses a catalyst composition for polymerization of an ?-olefin and preparation and use thereof. The catalyst composition comprises boron trifluoride and at least one protic cocatalyst; the protic cocatalyst has a structural formula of X—(CH2)n—OH, where n is an integer selected from 1 to 10; X is selected from nitro, halogen, cyano, sulfonic acid group, aldehyde group, acyl, carboxyl and amino. The catalyst can be used in production of a poly(?-olefin) synthetic base oil, and is particularly suitable for a low viscosity poly(?-olefin) synthetic base oil with high selectivity of the target product.
    Type: Application
    Filed: January 7, 2022
    Publication date: November 23, 2023
    Inventors: Yuanyuan Cao, Tong Liu, Hongling Chu, Libo Wang, Yulong Wang, Xianming Xu, Xiuhui Wang, Han Gao, Wei Sun, Hongpeng Li
  • Patent number: 11352572
    Abstract: The present invention provides a low viscosity poly-?-olefin lubricating oil and a synthesis method thereof. The method comprises: (1) the ?-olefin raw material is subjected to dehydration treatment so that the water content in the raw material is ?10 ppm; (2) a reaction of the dehydration treated ?-olefin raw material is carried out in the presence of a complex catalyst and gaseous BF3 to obtain a reaction product, wherein the pressure of the gaseous BF3 is 0.01 to 1 MPa; (3) the reaction product obtained in step (2) is sequentially subjected to flash distillation, gas stripping, centrifugation, and washing treatment to obtain an intermediate product; (4) the intermediate product obtained in step (3) is subjected to distillation under reduced pressure to separate the unreacted ?-olefin raw material and ?-olefin dimers, and the remaining heavy fractions are subjected to hydrogenation saturation treatment followed by fractionation and cutting-off.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: June 7, 2022
    Assignee: PETROCHINA COMPANY LIMITED
    Inventors: Hongling Chu, Sihan Wang, Kecun Ma, Xianming Xu, Libo Wang, Guizhi Wang, Yan Jiang, Legang Feng, Yulong Wang, Enhao Sun, Hongliang Huo, Tong Liu, Yali Wang, Xiuhui Wang, Han Gao, Yuanyuan Cao, Fengrong Wang, Weihong Guan, Ruhai Lin, Xuemei Han, Yunguang Han, Fuling Huang, Buwei Yu
  • Patent number: 11298693
    Abstract: The present disclosure provides a method and a catalyst for selective oligomerization of ethylene. The raw material for the catalyst consists of a dehydropyridine annulene-type ligand, a transition metal compound, and an organometallic compound in a molar ratio of 1:0.5-100:0.1-5000. The present disclosure also provides a method for selective oligomerization of ethylene accomplished by using the above-mentioned catalyst. The catalyst for selective oligomerization of ethylene has high catalytic activity, high selectivity for the target products 1-hexene and 1-octene, and low selectivity for 1-butene and 1-C10+.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: April 12, 2022
    Assignee: PETROCHINA COMPANY LIMITED
    Inventors: Buwei Yu, Tao Jiang, Sihan Wang, Hongling Chu, Yan Jiang, Hongliang Huo, Xianming Xu, Libo Wang, Huaiqi Shao, Yali Wang, Yuanyuan Cao, Tong Liu, Kecun Ma, Fuling Huang, Xiuhui Wang, Enhao Sun, Yulong Wang
  • Publication number: 20200190409
    Abstract: The present invention provides a low viscosity poly-?-olefin lubricating oil and a synthesis method thereof. The method comprises: (1) the ?-olefin raw material is subjected to dehydration treatment so that the water content in the raw material is ?10 ppm; (2) a reaction of the dehydration treated ?-olefin raw material is carried out in the presence of a complex catalyst and gaseous BF3 to obtain a reaction product, wherein the pressure of the gaseous BF3 is 0.01 to 1 MPa; (3) the reaction product obtained in step (2) is sequentially subjected to flash distillation, gas stripping, centrifugation, and washing treatment to obtain an intermediate product; (4) the intermediate product obtained in step (3) is subjected to distillation under reduced pressure to separate the unreacted ?-olefin raw material and ?-olefin dimers, and the remaining heavy fractions are subjected to hydrogenation saturation treatment followed by fractionation and cutting-off.
    Type: Application
    Filed: October 24, 2019
    Publication date: June 18, 2020
    Applicant: PETROCHINA COMPANY LIMITED
    Inventors: Hongling CHU, Sihan WANG, Kecun MA, Xianming XU, Libo WANG, Guizhi WANG, Yan JIANG, Legang FENG, Yulong WANG, Enhao SUN, Hongliang HUO, Tong LIU, Yali WANG, Xiuhui WANG, Han GAO, Yuanyuan CAO, Fengrong WANG, Weihong GUAN, Ruhai LIN, Xuemei HAN, Yunguang HAN, Fuling HUANG, Buwei YU
  • Publication number: 20190388882
    Abstract: The present disclosure provides a method and a catalyst for selective oligomerization of ethylene. The raw material for the catalyst consists of a dehydropyridine annulene-type ligand, a transition metal compound, and an organometallic compound in a molar ratio of 1:0.5-100:0.1-5000. The present disclosure also provides a method for selective oligomerization of ethylene accomplished by using the above-mentioned catalyst. The catalyst for selective oligomerization of ethylene has high catalytic activity, high selectivity for the target products 1-hexene and 1-octene, and low selectivity for 1-butene and 1-C10+.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 26, 2019
    Applicant: PETROCHINA COMPANY LIMITED
    Inventors: Buwei YU, Tao JIANG, Sihan WANG, Hongling CHU, Yan JIANG, Hongliang HUO, Xianming XU, Libo WANG, Huaiqi SHAO, Yali WANG, Yuanyuan CAO, Tong LIU, Kecun MA, Fuling HUANG, Xiuhui WANG, Enhao SUN, Yulong WANG
  • Patent number: 9421533
    Abstract: A catalyst for synthesizing 1-hexene from ethylene trimerization and its application are provided. Said catalyst consists of (a) the compound containing P and N, (b) electron donor, (c) Cr compound, (d) carrier and (e) accelerator. The molar ratio of (a), (b), (c), (d) and (e) is 0.5-100:0.5-100:1:0.5-10:50-5000. The catalyst is prepared by mixing the components of (a)-(e) in an ethylene trimerization apparatus in situ and ethylene is introduced into the apparatus continuously. The prepared catalyst can be used to synthesize 1-hexene from ethylene trimerization in the inert solvents. The trimerization is performed at 30-150° C. and 0.5-10.0 MPa for 0.1-4 hours. The catalyst has high catalytic activity and high 1-hexene selectivity. During the process of ethylene trimerization, by-product polyethylene does not stick to the apparatus.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: August 23, 2016
    Assignee: PETROCHINA COMPANY LIMITED
    Inventors: Gang Wang, Sihan Wang, Zhonghua Yang, Jiabo Qu, Baojun Zhang, Qian Chen, Deshun Zhang, Libo Wang, Yali Wang, Buwei Yu, Xiuhui Wang, Fuling Huang, Xuemei Han, Dongmei Niu, Shukun Sun, Wenchao Zhang, Hua Li, Gongchen Yan
  • Patent number: 9248430
    Abstract: A method for synthesis of 1-decene oligomer is provided, wherein 1-decene is polymerized at 80-120° C., 0.8-1.4 MPa in the presence of aluminum trichloride catalyst supported on gamma-alumina and n-hexane solvent where the volume ratio of 1-decene to n-hexane is 3:8-4:1. The catalyst is treated as follows: impregnating gamma-alumina carrier in 0.5-2.0 M of hydrochloric acid, sulfuric acid, nitric acid or mixtures thereof, then vacuum drying at 80-100° C. and calcining at 400-800° C.; dissolving 5-10 g of anhydrous aluminum trichloride in 100 ml of tetrachloromethane, trichloromethane or dichloromethane solvent; adding the obtained solution into 10-20 g of activated alumina carrier and obtaining the catalyst after vacuum drying. The conversion of 1-decene is 50 wt % or more. The oligomer has a kinematic viscosity at 40° C. of 6.0-25 mm2/s and a viscosity index of 160-262.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: February 2, 2016
    Assignees: PETROCHINA COMPANY LIMITED, EAST CHINA UNIVERSITY OF SCIENCE
    Inventors: Fuling Huang, Puke Mi, Sihan Wang, Jinhua Qian, Qian Chen, Sheng Xu, Jianzhong Li, Gang Wang, Baojun Zhang, Min Liu, Guizhi Wang, Xuemei Han, Jiabo Qu, Panfeng Lu, Shukun Sun, Xiuhui Wang, Yuxin Gao, Deshun Zhang, Ling Jiang, Buwei Yu, Libo Wang, Yali Wang, Lingting Fan, Peng Wei, Wei Liu, Guiyue Guo
  • Publication number: 20130090508
    Abstract: Disclosed is a method for preparing 1-octene in the presence of a catalyst system for ethylene oligomerization, which includes: premixing a part of ethylene gas as raw material with a solvent, mixing with the components a+b, c and d of the catalyst system, and then sending in a reactor; directly sending the rest of ethylene gas in the reactor; discharging the resultant liquid from the upper part of the reactor into an overflow channel; adding a catalysis stopping agent to the overflow channel; and then separating the resultant liquid. The advantages of the method are high selectivity of 1-octene and high catalytic activity.
    Type: Application
    Filed: June 3, 2011
    Publication date: April 11, 2013
    Applicant: PETROCHINA COMPANY LIMITED
    Inventors: Gang Wang, Baojun Zhang, Jianzhong Li, Sihan Wang, Jiabo Qu, Defu He, Guizhi Wang, Qian Chen, Buwei Yu, Deshun Zhang, Libo Wang, Yali Wang, Liwei Liang, Yuxin Gao, Jie Li, Wenchao Zhang, Hua Li, Xiaoyu Gao, Shouhui Zha, Fuling Huang, Jing Wei, Xiuhui Wang, Xiangmin Yu, Jingying Zhao, Xuemei Han, Chunfeng Song, Junfeng Wei, Rui Meng
  • Publication number: 20120310025
    Abstract: A catalyst for synthesizing 1-hexene from ethylene trimerization and its application are provided. Said catalyst consists of (a) the compound containing P and N, (b) electron donor, (c) Cr compound, (d) carrier and (e) accelerator. The molar ratio of (a), (b), (c), (d) and (e) is 0.5-100:0.5-100:1:0.5-10:50-5000. The catalyst is prepared by mixing the components of (a)-(e) in an ethylene trimerization apparatus in situ and ethylene is introduced into the apparatus continuously. The prepared catalyst can be used to synthesize 1-hexene from ethylene trimerization in the inert solvents. The trimerization is performed at 30-150° C. and 0.5-10.0 MPa for 0.1-4 hours. The catalyst has high catalytic activity and high 1-hexene selectivity. During the process of ethylene trimerization, by-product polyethylene does not stick to the apparatus.
    Type: Application
    Filed: July 22, 2010
    Publication date: December 6, 2012
    Applicant: PETROCHINA COMPANY LIMITED
    Inventors: Gang Wang, Sihan Wang, Zhonghua Yang, Jiabo Qu, Baojun Zhang, Qian Chen, Deshun Zhang, Libo Wang, Yali Wang, Buwei Yu, Xiuhui Wang, Fuling Huang, Xuemei Han, Dongmei Niu, Shukun Sun, Wenchao Zhang, Hua Li, Gongchen Yan
  • Publication number: 20120232321
    Abstract: A method for synthesis of 1-decene oligomer is provided, wherein 1-decene is polymerized at 80-120° C., 0.8-1.4 MPa in the presence of aluminum trichloride catalyst supported on gamma-alumina and n-hexane solvent where the volume ratio of 1-decene to n-hexane is 3:8-4:1. The catalyst is treated as follows: impregnating gamma-alumina carrier in 0.5-2.0 mol of hydrochloric acid, sulfuric acid, nitric acid or mixtures thereof, then vacuum drying at 80-100° C. and calcining at 400-800° C.; dissolving 5-10 g of anhydrous aluminum trichloride in 100 ml of tetrachloromethane, trichloromethane or dichloromethane solvent; adding the obtained solution into 10-20 g of activated alumina carrier and obtaining the catalyst after vacuum drying. The conversion rate of 1-decene is 50 wt % or more. The oligomer has a kinematic viscosity at 40° C. of 6.0-25 mm2/s and a viscosity index of 160-262.
    Type: Application
    Filed: July 22, 2010
    Publication date: September 13, 2012
    Applicant: PETROCHINA COMPANY LIMITED
    Inventors: Fuling Huang, Puke Mi, Sihan Wang, Jinhua Qian, Qian Chen, Sheng Xu, Jianzhong Li, Gang Wang, Baojun Zhang, Min Liu, Guizhi Wang, Xuemei Han, Jiabo Qu, Panfeng Lu, Shukun Sun, Xiuhui Wang, Yuxin Gao, Deshun Zhang, Ling Jiang, Buwei Yu, Libo Wang, Yali Wang, Lingting Fan, Peng Wei, Wei Liu, Guiyue Guo