Patents by Inventor Xiuwen Tu

Xiuwen Tu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11133778
    Abstract: A method of high reverse current burn-in of solar cells and a solar cell with a burned-in bypass diode are described herein. In one embodiment, high reverse current burn-in of a solar cell with a tunnel oxide layer induces low breakdown voltage in the solar cell. Soaking a solar cell at high current can also reduce the difference in voltage of defective and non-defective areas of the cell.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: September 28, 2021
    Assignee: SunPower Corporation
    Inventors: Michael J. Defensor, Xiuwen Tu, Junbo Wu, David D. Smith
  • Patent number: 10804843
    Abstract: Methods of testing a semiconductor, and semiconductor testing apparatus, are described. In an example, a method for testing a semiconductor can include applying light on the semiconductor to induce photonic degradation. The method can also include receiving a photoluminescence measurement induced from the applied light from the semiconductor and monitoring the photonic degradation of the semiconductor from the photoluminescence measurement.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: October 13, 2020
    Assignee: SunPower Corporation
    Inventors: Xiuwen Tu, David Aitan Soltz, Michael C. Johnson, Seung Bum Rim, Taiqing Qiu, Yu-Chen Shen, Kieran Mark Tracy
  • Patent number: 10476432
    Abstract: High throughput systems for photovoltaic UV degradation testing of solar cells, and methods of testing for UV degradation of solar cell during manufacture, are described herein. In an example, a high throughput solar cell testing apparatus includes a plurality of real time ultra-violet (RTUV) testing modules. Each of the RTUV testing modules includes an ultra-violet (UV) light source, an optics assembly for focusing light from the UV light source on a sample area, and a detector for receiving photoluminescence energy from the sample area. The high throughput solar cell testing apparatus also includes an acquisition and control assembly coupled to the plurality of RTUV testing modules.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: November 12, 2019
    Assignee: SunPower Corporation
    Inventors: David Aitan Soltz, Yoann Buratti, Xiuwen Tu, Ryan Manuel Lacerda, Taiqing Qiu
  • Publication number: 20190273467
    Abstract: Methods of testing a semiconductor, and semiconductor testing apparatus, are described. In an example, a method for testing a semiconductor can include applying light on the semiconductor to induce photonic degradation. The method can also include receiving a photoluminescence measurement induced from the applied light from the semiconductor and monitoring the photonic degradation of the semiconductor from the photoluminescence measurement.
    Type: Application
    Filed: March 11, 2019
    Publication date: September 5, 2019
    Inventors: Xiuwen Tu, David Aitan Soltz, Michael C. Johnson, Seung Bum Rim, Taiqing Qiu, Yu-Chen Shen, Kieran Mark Tracy
  • Patent number: 10230329
    Abstract: Methods of testing a semiconductor, and semiconductor testing apparatus, are described. In an example, a method for testing a semiconductor can include applying light on the semiconductor to induce photonic degradation. The method can also include receiving a photoluminescence measurement induced from the applied light from the semiconductor and monitoring the photonic degradation of the semiconductor from the photoluminescence measurement.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: March 12, 2019
    Assignee: SunPower Corporation
    Inventors: Xiuwen Tu, David Aitan Soltz, Michael C. Johnson, Seung Bum Rim, Taiqing Qiu, Yu-Chen Shen, Kieran Mark Tracy
  • Publication number: 20180191298
    Abstract: A method of high reverse current burn-in of solar cells and a solar cell with a burned-in bypass diode are described herein. In one embodiment, high reverse current burn-in of a solar cell with a tunnel oxide layer induces low breakdown voltage in the solar cell. Soaking a solar cell at high current can also reduce the difference in voltage of defective and non-defective areas of the cell.
    Type: Application
    Filed: February 27, 2018
    Publication date: July 5, 2018
    Inventors: Michael J. DEFENSOR, Xiuwen TU, Junbo WU, David D. SMITH
  • Patent number: 9912290
    Abstract: A method of high reverse current burn-in of solar cells and a solar cell with a burned-in bypass diode are described herein. In one embodiment, high reverse current burn-in of a solar cell with a tunnel oxide layer induces low breakdown voltage in the solar cell. Soaking a solar cell at high current can also reduce the difference in voltage of defective and non-defective areas of the cell.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: March 6, 2018
    Assignee: SunPower Corporation
    Inventors: Michael J Defensor, Xiuwen Tu, Junbo Wu, David Smith
  • Publication number: 20180041165
    Abstract: High throughput systems for photovoltaic UV degradation testing of solar cells, and methods of testing for UV degradation of solar cell during manufacture, are described herein. In an example, a high throughput solar cell testing apparatus includes a plurality of real time ultra-violet (RTUV) testing modules. Each of the RTUV testing modules includes an ultra-violet (UV) light source, an optics assembly for focusing light from the UV light source on a sample area, and a detector for receiving photoluminescence energy from the sample area. The high throughput solar cell testing apparatus also includes an acquisition and control assembly coupled to the plurality of RTUV testing modules.
    Type: Application
    Filed: December 30, 2016
    Publication date: February 8, 2018
    Inventors: David Aitan Soltz, Yoann Buratti, Xiuwen Tu, Ryan Manuel Lacerda, Taiqing Qiu
  • Publication number: 20170149383
    Abstract: Methods of testing a semiconductor, and semiconductor testing apparatus, are described. In an example, a method for testing a semiconductor can include applying light on the semiconductor to induce photonic degradation. The method can also include receiving a photoluminescence measurement induced from the applied light from the semiconductor and monitoring the photonic degradation of the semiconductor from the photoluminescence measurement.
    Type: Application
    Filed: February 6, 2017
    Publication date: May 25, 2017
    Inventors: Xiuwen Tu, David Aitan Soltz, Michael C. Johnson, Seung Bum Rim, Taiqing Qiu, Yu-Chen Shen, Kieran Mark Tracy
  • Publication number: 20170069777
    Abstract: An adhesive may be applied to a surface of a reusable carrier. Metal foil may be attached to the adhesive to couple the metal foil to the surface of the reusable carrier. The metal foil may be patterned without damaging the reusable carrier. A semiconductor structure (e.g., a solar cell) may be attached to the patterned metal foil. The reusable carrier may then be removed. In some embodiments, the semiconductor structure may be encapsulated using an encapsulant, with the adhesive being compatible with the encapsulant.
    Type: Application
    Filed: November 18, 2016
    Publication date: March 9, 2017
    Applicant: SunPower Corporation
    Inventors: Thomas PASS, Richard SEWELL, Taeseok KIM, Gabriel HARLEY, David F. J. KAVULAK, Xiuwen TU
  • Patent number: 9564854
    Abstract: Methods of testing a semiconductor, and semiconductor testing apparatus, are described. In an example, a method for testing a semiconductor can include applying light on the semiconductor to induce photonic degradation. The method can also include receiving a photoluminescence measurement induced from the applied light from the semiconductor and monitoring the photonic degradation of the semiconductor from the photoluminescence measurement.
    Type: Grant
    Filed: May 6, 2015
    Date of Patent: February 7, 2017
    Assignee: SunPower Corporation
    Inventors: Xiuwen Tu, David Aitan Soltz, Michael C. Johnson, Seung Bum Rim, Taiqing Qiu, Yu-Chen Shen, Kieran Mark Tracy
  • Patent number: 9502596
    Abstract: An adhesive may be applied to a surface of a reusable carrier. Metal foil may be attached to the adhesive to couple the metal foil to the surface of the reusable carrier. The metal foil may be patterned without damaging the reusable carrier. A semiconductor structure (e.g., a solar cell) may be attached to the patterned metal foil. The reusable carrier may then be removed. In some embodiments, the semiconductor structure may be encapsulated using an encapsulant, with the adhesive being compatible with the encapsulant.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: November 22, 2016
    Assignee: SunPower Corporation
    Inventors: Thomas Pass, Richard Sewell, Taeseok Kim, Gabriel Harley, David F. J. Kavulak, Xiuwen Tu
  • Publication number: 20160329864
    Abstract: Methods of testing a semiconductor, and semiconductor testing apparatus, are described. In an example, a method for testing a semiconductor can include applying light on the semiconductor to induce photonic degradation. The method can also include receiving a photoluminescence measurement induced from the applied light from the semiconductor and monitoring the photonic degradation of the semiconductor from the photoluminescence measurement.
    Type: Application
    Filed: May 6, 2015
    Publication date: November 10, 2016
    Inventors: Xiuwen Tu, David Aitan Soltz, Michael C. Johnson, Seung Bum Rim, Taiqing Qiu, Yu-Chen Shen, Kieran Mark Tracy
  • Patent number: 9450113
    Abstract: Forming a metal layer on a solar cell. Forming a metal layer can include placing a patterned metal foil on the solar cell, where the patterned metal foil includes a positive busbar, a negative busbar, a positive contact finger extending from the positive busbar, a negative contact finger extending from the negative busbar, and a metal strip, and one or more tabs. The positive and negative busbars and the positive and negative contact fingers can be connected to one another by the metal strip and tabs. Forming the metal layer can further include coupling the patterned metal foil to the solar cell and removing the metal strip and tabs. Removing the metal strip and tabs can separate the positive and negative busbars and contact fingers.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: September 20, 2016
    Assignee: SunPower Corporation
    Inventor: Xiuwen Tu
  • Patent number: 9263601
    Abstract: Enhanced adhesion of seed layers for solar cell conductive contacts and methods of forming solar cell conductive contacts are described. For example, a method of fabricating a solar cell includes forming an adhesion layer above an emitter region of a substrate. A metal seed paste layer is formed on the adhesion layer. The metal seed paste layer and the adhesion layer are annealed to form a conductive layer in contact with the emitter region of the substrate. A conductive contact for the solar cell is formed from the conductive layer.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: February 16, 2016
    Assignee: SunPower Corporation
    Inventors: Junbo Wu, Michael C. Johnson, Michael Cudzinovic, Joseph Behnke, Xi Zhu, David D. Smith, Richard Sewell Hamilton, Xiuwen Tu, Seung Bum Rim
  • Publication number: 20150325710
    Abstract: Forming a metal layer on a solar cell. Forming a metal layer can include placing a patterned metal foil on the solar cell, where the patterned metal foil includes a positive busbar, a negative busbar, a positive contact finger extending from the positive busbar, a negative contact finger extending from the negative busbar, and a metal strip, and one or more tabs. The positive and negative busbars and the positive and negative contact fingers can be connected to one another by the metal strip and tabs. Forming the metal layer can further include coupling the patterned metal foil to the solar cell and removing the metal strip and tabs. Removing the metal strip and tabs can separate the positive and negative busbars and contact fingers.
    Type: Application
    Filed: July 22, 2015
    Publication date: November 12, 2015
    Inventor: Xiuwen Tu
  • Publication number: 20150318822
    Abstract: A solar cell testing apparatus can include a first electrical probe configured to receive a first voltage at a first location of a solar cell. The solar cell testing apparatus can also include a second electrical probe configured to receive a second voltage at a second location of the solar cell, where the second location is of the same polarity as the first location.
    Type: Application
    Filed: June 30, 2014
    Publication date: November 5, 2015
    Inventors: Xiuwen Tu, David D. Smith, David Aitan Soltz
  • Patent number: 9112097
    Abstract: Forming a metal layer on a solar cell. Forming a metal layer can include placing a patterned metal foil on the solar cell, where the patterned metal foil includes a positive busbar, a negative busbar, a positive contact finger extending from the positive busbar, a negative contact finger extending from the negative busbar, a metal strip, and one or more tabs. The positive and negative busbars and the positive and negative contact fingers can be connected to one another by the metal strip and tabs. Forming the metal layer can further include coupling the patterned metal foil to the solar cell and removing the metal strip and tabs. Removing the metal strip and tabs can separate the positive and negative busbars and contact fingers.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: August 18, 2015
    Assignee: SunPower Corporation
    Inventor: Xiuwen Tu
  • Publication number: 20150093851
    Abstract: Forming a metal layer on a solar cell. Forming a metal layer can include placing a patterned metal foil on the solar cell, where the patterned metal foil includes a positive busbar, a negative busbar, a positive contact finger extending from the positive busbar, a negative contact finger extending from the negative busbar, a metal strip, and one or more tabs. The positive and negative busbars and the positive and negative contact fingers can be connected to one another by the metal strip and tabs. Forming the metal layer can further include coupling the patterned metal foil to the solar cell and removing the metal strip and tabs. Removing the metal strip and tabs can separate the positive and negative busbars and contact fingers.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 2, 2015
    Inventor: Xiuwen Tu
  • Publication number: 20150000724
    Abstract: An adhesive may be applied to a surface of a reusable carrier. Metal foil may be attached to the adhesive to couple the metal foil to the surface of the reusable carrier. The metal foil may be patterned without damaging the reusable carrier. A semiconductor structure (e.g., a solar cell) may be attached to the patterned metal foil. The reusable carrier may then be removed. In some embodiments, the semiconductor structure may be encapsulated using an encapsulant, with the adhesive being compatible with the encapsulant.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Thomas PASS, Richard SEWELL, Taeseok KIM, Gabriel HARLEY, David F.J. KAVULAK, Xiuwen TU