Patents by Inventor Xuan Fu

Xuan Fu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110318587
    Abstract: Nanoscopic metallized and nonmetallized nanoscopic silicon containing agents including polyhedral oligomeric silsesquioxane and polyhedral oligomeric silicate provide radiation absorption and in situ formation of nanoscopic glass layers on material surfaces. These property improvements are useful in space-survivable materials, microelectronic packaging, and radiation absorptive paints, coatings and molded articles.
    Type: Application
    Filed: September 9, 2011
    Publication date: December 29, 2011
    Applicant: Hybrid Plastics, Inc.
    Inventors: Joseph D. Lichtenhan, Xuan Fu, Paul Wheeler
  • Patent number: 8072358
    Abstract: A variable length decoder that decodes a variable length code to output data including a run and a level, the variable length decoder includes a memory that stores an output format of a run and a level according to a prefix for specifying an area which is generated by dividing a run-level plane based on the run; a extraction circuit that extracts the prefix, run computation data, and level computation data from the variable length code; and an output circuit that accesses the memory based on the prefix and outputs the data based on the run computation data and the level computation data.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: December 6, 2011
    Assignee: Fujitsu Limited
    Inventors: Taro Hagiya, Xuan Fu
  • Publication number: 20110092661
    Abstract: A method of using metallized and nonmetallized nanoscopic silicon containing agents for physical property control, radiation absorption, and in situ formation of nanoscopic glass layers on material surfaces. Because of their tailorable compatibility with polymers, metals, composites, ceramics, glasses and biological materials, nanoscopic silicon containing agents can be readily and selectively incorporated into materials at the nanometer level by direct mixing processes. Properties improved include gas and liquid barrier, stain resistance, resistance to environmental degradation, radiation absorption, adhesion, printability, time dependent mechanical and thermal properties such as heat distortion, creep, compression set, shrinkage, modulus, hardness and abrasion resistance, electrical and thermal conductivity, and fire resistance.
    Type: Application
    Filed: December 13, 2010
    Publication date: April 21, 2011
    Inventors: Joseph D. Lichtenhan, Xuan Fu, Steven R. LeClair
  • Publication number: 20100305282
    Abstract: A method of using metallized and nonmetallized nanostructured chemicals as surface and volume modification agents within polymers and on the surfaces of nano and macroscopic particulates and fillers. Because of their 0.5 nm-3.0 nm size, nanostructured chemicals can be utilized to greatly increase surface area, improve compatibility, and promote lubricity between surfaces at a length scale not previously attainable.
    Type: Application
    Filed: May 25, 2010
    Publication date: December 2, 2010
    Applicant: Hybrid Plastics, Inc.
    Inventors: Joseph D. Lichtenhan, Xuan Fu, Marion R. Blue, Paul Wheeler, Rahul Misra, Sarah Morgan
  • Patent number: 7820761
    Abstract: Metallized polyhedral oligomeric silsesquioxanes and metallized polyhedral oligomeric silicates are used as cure promoters, catalysts, and alloying agents for the reinforcement of polymer microstructures, including polymer coils, domains, chains, and segments, at the molecular level. Because of their tailorable compatibility with polymers, polyhedral oligomeric metallosesquioxanes (POMS) can be readily and selectively incorporated into polymers by common mixing processes.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: October 26, 2010
    Assignee: Hybrid Plastics, Inc.
    Inventors: Joseph D. Lichtenhan, Joseph J. Schwab, Xuan Fu, Hendrikus C. L. Abbenhuis, Paul Wheeler
  • Patent number: 7737228
    Abstract: A method of using metallized polyhedral oligomeric silsesquioxanes as cure promoters and catalysts for polyurethanes.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: June 15, 2010
    Assignee: Hybrid Plastics, Inc.
    Inventors: Joseph D. Lichtenhan, Joseph J. Schwab, Xuan Fu
  • Patent number: 7723415
    Abstract: A method of using metallized and nonmetallized nanostructured chemicals as surface and volume modification agents within polymers and on the surfaces of nano and macroscopic particulates and fillers. Because of their 0.5 nm-3.0 nm size, nanostructured chemicals can be utilized to greatly increase surface area, improve compatibility, and promote lubricity between surfaces at a length scale not previously attainable.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: May 25, 2010
    Assignee: Hybrid Plastics, Inc.
    Inventors: Joseph D. Lichtenhan, Xuan Fu, Marion R. Blue, Paul Wheeler, Rahul Misra, Sarah Morgan
  • Publication number: 20100125123
    Abstract: Metallized polyhedral oligomeric silsesquioxanes and metallized polyhedral oligomeric silicates are used as cure promoters, catalysts, and alloying agents for the reinforcement of polymer microstructures, including polymer coils, domains, chains, and segments, at the molecular level. Because of their tailorable compatibility with polymers, polyhedral oligomeric metallosesquioxanes (POMS) can be readily and selectively incorporated into polymers by common mixing processes.
    Type: Application
    Filed: September 29, 2006
    Publication date: May 20, 2010
    Inventors: Joseph D. Lichtenhan, Joseph J. Schwab, Xuan Fu, H.C.L. Abbenhuis, Paul Wheeler
  • Publication number: 20100039301
    Abstract: A variable length decoder that decodes a variable length code to output data including a run and a level, the variable length decoder includes a memory that stores an output format of a run and a level according to a prefix for specifying an area which is generated by dividing a run-level plane based on the run; a extraction circuit that extracts the prefix, run computation data, and level computation data from the variable length code; and an output circuit that accesses the memory based on the prefix and outputs the data based on the run computation data and the level computation data.
    Type: Application
    Filed: July 31, 2009
    Publication date: February 18, 2010
    Applicant: FUJITSU LIMITED
    Inventors: Taro Hagiya, Xuan Fu
  • Patent number: 7612143
    Abstract: Metallized nanostructured chemicals are incorporated at the molecular level as alloying agents for the reinforcement of polymer microstructures, including polymer coils, domains, chains, and segments. Direct blending processes are effective because of the tailorable compatibility of the metallized nanostructured chemicals with polymers.
    Type: Grant
    Filed: August 21, 2006
    Date of Patent: November 3, 2009
    Assignee: Hybrid Plastics, Inc.
    Inventors: Joseph D. Lichtenhan, Xuan Fu, Joseph J. Schwab, Paul Wheeler, Hendrikus C. L. Abbenhuis
  • Patent number: 7572872
    Abstract: Nanostructured chemicals such as polyhedral oligomeric silsesquioxanes, polyhedral oligomeric silicates, and polyhedral oligomeric metallasesquioxanes are attached to living and nonliving systems as biomaterials to provide a nanoscopic topology that favors biomimetic function and cellular modulation. The resulting surface is nanoscopically thin, nanoscopically dispersed, provides systematic chemistry, surface area, surface volume, surface topology, and is essentially free of impurities, and has controllable properties through selection of composition, R groups, nanostructure size and topology. Highly shape specific and chemically tailorable nanostructured molecules are sized to biological material dimensions and are compatible with all sterilization methods.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: August 11, 2009
    Inventors: Jason T. Flodin, Joseph D. Lichtenhan, Joseph J. Schwab, Yi-Zhong An, Xuan Fu, Zachary Kemp
  • Publication number: 20090176006
    Abstract: Nanostructured chemicals such as polyhedral oligomeric silsesquioxanes, polyhedral oligomeric silicates, and polyhedral oligomeric metallasesquioxanes are attached to living and nonliving systems as biomaterials to provide a nanoscopic topology that favors biomimetic function and cellular modulation. The resulting surface is nanoscopically thin, nanoscopically dispersed, provides systematic chemistry, surface area, surface volume, surface topology, and is essentially free of impurities, and has controllable properties through selection of composition, R groups, nanostructure size and topology. Highly shape specific and chemically tailorable nanostructured molecules are sized to biological material dimensions and are compatible with all sterilization methods.
    Type: Application
    Filed: April 24, 2006
    Publication date: July 9, 2009
    Inventors: Jason T. Flodin, Joseph D. Lichtenhan, Joseph J. Schwab, Yi-Zhong An, Xuan Fu, Zachary Kemp
  • Patent number: 7553904
    Abstract: A method of using olefin containing nanostructured chemicals and silanol containing nanostructured chemicals as high temperature resins is described. Vinyl containing nanostructured chemicals are particularity effective in thermosets as they control the motions of polymer chains, and segments, at the molecular level. Silanol containing nanostructured chemicals are particularity effective in thermosets containing polar groups as the silanol can enhance the reactivity of these groups. Because of their tailorable compatibility with fluorinated polymers, nanostructured chemicals can be readily and selectively incorporated into polymers by direct blending and polymerization processes. The incorporation of a nanostructured chemical into a polymer favorably impacts a multitude of polymer physical properties. Properties most favorably improved are heat distortion and flammability characteristics, permeability, optical properties, texture, feel and durability.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: June 30, 2009
    Assignee: Hybrid Plastics, Inc.
    Inventors: Joseph D. Lichtenhan, Qibo Liu, Yan-Jyh Lee, Xuan Fu, Sukhendu Hait, Joseph J. Schwab, Rusty L. Blanski, Patrick N. Ruth
  • Publication number: 20090085011
    Abstract: A composition for shielding living tissue from cosmic radiation exposure during air and space flights, using polyhedral oligomeric silsesquioxanes incorporating metals with high neutron capture cross-sections. Methods for incorporation of such compositions into textiles, garments, and skin lotions are described.
    Type: Application
    Filed: September 29, 2008
    Publication date: April 2, 2009
    Inventors: Joseph D. Lichtenhan, Paul Wheeler, Xuan Fu
  • Publication number: 20090082502
    Abstract: A method of using metallized polyhedral oligomeric silsesquioxanes as cure promoters and catalysts for polyurethanes.
    Type: Application
    Filed: May 21, 2008
    Publication date: March 26, 2009
    Inventors: Joseph D. Lichtenhan, Joseph J. Schwab, Xuan Fu
  • Publication number: 20080262162
    Abstract: Metallized nanostructured chemicals are incorporated at the molecular level as alloying agents for the reinforcement of polymer microstructures, including polymer coils, domains, chains, and segments. Direct blending processes are effective because of the tailorable compatibility of the metallized nanostructured chemicals with polymers.
    Type: Application
    Filed: August 21, 2006
    Publication date: October 23, 2008
    Inventors: Joseph D. Lichtenhan, Xuan Fu, Joseph J. Schwab, Paul Wheeler, H.C.L. Abbenhuis
  • Publication number: 20080249275
    Abstract: Nanoscopic metallized and nonmetallized nanoscopic silicon containing agents including polyhedral oligomeric silsesquioxane and polyhedral oligomeric silicate provide radiation absorption and in situ formation of nanoscopic glass layers on material surfaces. These property improvements are useful in space-survivable materials, microelectronic packaging, and radiation absorptive paints, coatings and molded articles.
    Type: Application
    Filed: August 30, 2007
    Publication date: October 9, 2008
    Inventors: Joseph D. Lichtenhan, Xuan Fu, Paul Wheeler
  • Publication number: 20080020213
    Abstract: A method of using olefin containing nanostructured chemicals and silanol containing nanostructured chemicals as high temperature resins is described. Vinyl containing nanostructured chemicals are particularity effective in thermosets as they control the motions of polymer chains, and segments, at the molecular level. Silanol containing nanostructured chemicals are particularity effective in thermosets containing polar groups as the silanol can enhance the reactivity of these groups. Because of their tailorable compatibility with fluorinated polymers, nanostructured chemicals can be readily and selectively incorporated into polymers by direct blending and polymerization processes. The incorporation of a nanostructured chemical into a polymer favorably impacts a multitude of polymer physical properties. Properties most favorably improved are heat distortion and flammability characteristics, permeability, optical properties, texture, feel and durability.
    Type: Application
    Filed: September 12, 2005
    Publication date: January 24, 2008
    Inventors: Joseph Lichtenhan, Qibo Liu, Yan-Jyh Lee, Xuan Fu, Sukhendu Hait, Joseph Schwab, Rusty Blanski, Patrick Ruth
  • Publication number: 20070225434
    Abstract: A method of using metallized and nonmetallized nanostructured chemicals as surface and volume modification agents within polymers and on the surfaces of nano and macroscopic particulates and fillers. Because of their 0.5 nm-3.0 nm size, nanostructured chemicals can be utilized to greatly increase surface area, improve compatibility, and promote lubricity between surfaces at a length scale not previously attainable.
    Type: Application
    Filed: December 18, 2006
    Publication date: September 27, 2007
    Inventors: Joseph Lichtenhan, Xuan Fu, Marion Blue, Paul Wheeler, Rahul Misra, Sarah Morgan
  • Publication number: 20060263531
    Abstract: A method of using nanoscopic silicon containing agents for in situ formation of nanoscopic glass layers on material surfaces is described. Because of their tailorable compatibility with polymers, metals, composites, ceramics, glasses and biological materials, nanoscopic silicon containing agents can be readily and selectively incorporated into materials at the nanometer level by direct mixing processes. Improved properties include gas and liquid barrier; stain resistance; resistance to environmental degradation; adhesion; printability; time dependent mechanical and thermal properties such as heat distortion, creep, compression set, shrinkage, and modulus; hardness and abrasion resistance; oxidation resistance; electrical and thermal conductivity; and fire resistance.
    Type: Application
    Filed: May 24, 2006
    Publication date: November 23, 2006
    Inventors: Joseph Lichtenhan, Xuan Fu, France Frechette, James Tatalick