Patents by Inventor Xucheng Zhu

Xucheng Zhu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11828824
    Abstract: Image reconstruction systems and methods include providing sensitivity maps for coils of a magnetic resonance imaging (MRI) system to a neural network. The systems and methods also include providing interleaved k-space data to the neural network, wherein the interleaved k-space data includes partial k-space data interleaved with zeros, or synthesized k-space data, to provide an extended field of view (FOV) different from a FOV utilized during acquisition of the partial k-space data, wherein the partial k-space data were obtained during a scan of a region of interest with the MRI system. The systems and methods further include outputting, from the neural network, a final reconstructed MR image based at least on the sensitivity maps and the interleaved k-space data, wherein the final reconstructed MR image includes the FOV utilized during the acquisition of the partial k-space data.
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: November 28, 2023
    Assignee: GE Precision Healthcare LLC
    Inventors: Xucheng Zhu, Graeme Colin McKinnon, Andrew James Coristine, Martin Andreas Janich
  • Publication number: 20230196556
    Abstract: A magnetic resonance (MR) image processing system is provided. The system includes an MR image processing computing device that includes at least one processor. The processor is programmed to execute a neural network model configured to receive crude MR data as an input and output processed MR images associated with the crude MR data, the crude MR data and the processed MR images having the first number of dimensions. The processor is also programmed to receive a pair of pristine data and corrupted data both having a second number of dimensions lower than the first number of dimensions. The corrupted data are the pristine data added with primitive features. The processor is further programmed to train the neural network model using the pair of the pristine data and the corrupted data. The trained neural network model is configured to change primitive features associated with the crude MR data.
    Type: Application
    Filed: December 17, 2021
    Publication date: June 22, 2023
    Inventors: Robert Marc Lebel, Suryanarayanan S. Kaushik, Graeme C. McKinnon, Xucheng Zhu
  • Patent number: 11474183
    Abstract: A magnetic resonance (MR) imaging method of correcting motion in precorrection MR images of a subject is provided. The method includes applying, by an MR system, a pulse sequence having a k-space trajectory of a blade being rotated in k-space. The method also includes acquiring k-space data of a three-dimensional (3D) imaging volume of the subject, the k-space data of the 3D imaging volume corresponding to the precorrection MR images and acquired by the pulse sequence. The method further includes receiving a 3D MR calibration data of a 3D calibration volume, wherein the 3D calibration volume is greater than or equal to the 3D imaging volume, jointly estimating rotation and translation in the precorrection MR images based on the k-space data of the 3D imaging volume and the calibration data, correcting motion in the precorrection images based on the estimated rotation and the estimated translation, and outputting the motion-corrected images.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: October 18, 2022
    Assignee: GE PRECISION HEALTHCARE LLC
    Inventors: Shaorong Chang, Xucheng Zhu, Ali Ersoz, Ajeetkumar Gaddipati, Moran Wei
  • Publication number: 20220299588
    Abstract: Image reconstruction systems and methods include providing sensitivity maps for coils of a magnetic resonance imaging (MRI) system to a neural network. The systems and methods also include providing interleaved k-space data to the neural network, wherein the interleaved k-space data includes partial k-space data interleaved with zeros, or synthesized k-space data, to provide an extended field of view (FOV) different from a FOV utilized during acquisition of the partial k-space data, wherein the partial k-space data were obtained during a scan of a region of interest with the MRI system. The systems and methods further include outputting, from the neural network, a final reconstructed MR image based at least on the sensitivity maps and the interleaved k-space data, wherein the final reconstructed MR image includes the FOV utilized during the acquisition of the partial k-space data.
    Type: Application
    Filed: March 17, 2021
    Publication date: September 22, 2022
    Inventors: Xucheng Zhu, Graeme Colin McKinnon, Andrew James Coristine, Martin Andreas Janich