Patents by Inventor Xuerang Hu

Xuerang Hu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10811222
    Abstract: A secondary projection imaging system in a multi-beam apparatus is proposed, which makes the secondary electron detection with high collection efficiency and low cross-talk. The system employs one zoom lens, one projection lens and one anti-scanning deflection unit. The zoom lens and the projection lens respectively perform the zoom function and the anti-rotating function to remain the total imaging magnification and the total image rotation with respect to the landing energies and/or the currents of the plural primary beamlets. The anti-scanning deflection unit performs the anti-scanning function to eliminate the dynamic image displacement due to the deflection scanning of the plural primary beamlets.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: October 20, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Weiming Ren, Xuedong Liu, Xuerang Hu, Zhongwei Chen
  • Publication number: 20200321191
    Abstract: A multi-beam inspection apparatus supporting a plurality of operation modes is disclosed. The charged particle beam apparatus for inspecting a sample supporting a plurality of operation modes comprises a charged particle beam source configured to emit a charged particle beam along a primary optical axis, a movable aperture plate, movable between a first position and a second position, and a controller having circuitry and configured to change the configuration of the apparatus to switch between a first mode and a second mode. In the first mode, the movable aperture plate is positioned in the first position and is configured to allow a first charged particle beamlet derived from the charged particle beam to pass through. In the second mode, the movable aperture plate is positioned in the second position and is configured to allow the first charged particle beamlet and a second charged particle beamlet to pass through.
    Type: Application
    Filed: March 30, 2020
    Publication date: October 8, 2020
    Inventors: Weiming REN, Xuedong LIU, Xuerang HU, Zhong-wei CHEN
  • Publication number: 20200303155
    Abstract: A multi-beam apparatus for multi-beam inspection with an improved source conversion unit providing more beamlets with high electric safety, mechanical availability and mechanical stabilization has been disclosed. The source-conversion unit comprises an image-forming element array having a plurality of image-forming elements, an aberration compensator array having a plurality of micro-compensators, and a pre-bending element array with a plurality of pre-bending micro-deflectors. In each of the arrays, adjacent elements are placed in different layers, and one element may comprise two or more sub-elements placed in different layers. The sub-elements of a micro-compensator may have different functions such as micro-lens and micro-stigmators.
    Type: Application
    Filed: October 2, 2018
    Publication date: September 24, 2020
    Inventors: Xuerang HU, Xuedong LIU, Weiming REN, Zhong-wei CHEN
  • Publication number: 20200286708
    Abstract: A multi-cell detector may include a first layer having a region of a first conductivity type and a second layer including a plurality of regions of a second conductivity type. The second layer may also include one or more regions of the first conductivity type. The plurality of regions of the second conductivity type may be partitioned from one another by the one or more regions of the first conductivity type of the second layer. The plurality of regions of the second conductivity type may be spaced apart from one or more regions of the first conductivity type in the second layer. The detector may further include an intrinsic layer between the first and second layers.
    Type: Application
    Filed: September 28, 2018
    Publication date: September 10, 2020
    Inventors: Joe WANG, Yongxin WANG, Zhong-wei CHEN, Xuerang HU
  • Publication number: 20200266023
    Abstract: Disclosed herein is an apparatus comprising: a source of charged particles configured to emit a beam of charged particles along a primary beam axis of the apparatus; a condenser lens configured to cause the beam to concentrate around the primary beam axis; an aperture; a first multi-pole lens; a second multi-pole lens; wherein the first multi-pole lens is downstream with respect to the condenser lens and upstream with respect to the second multi-pole lens; wherein the second multi-pole lens is downstream with respect to the first multi-pole lens and upstream with respect to the aperture.
    Type: Application
    Filed: September 25, 2018
    Publication date: August 20, 2020
    Inventors: Xuedong LIU, Qingpo XI, Youfei JIANG, Weiming REN, Xuerang HU, Zhongwei CHEN
  • Publication number: 20200211811
    Abstract: A multi-beam inspection apparatus including an improved source conversion unit is disclosed. The improved source conversion unit may comprise a micro-structure deflector array including a plurality of multipole structures. The micro-deflector deflector array may comprise a first multipole structure having a first radial shift from a central axis of the array and a second multipole structure having a second radial shift from the central axis of the array. The first radial shift is larger than the second radial shift, and the first multipole structure comprises a greater number of pole electrodes than the second multipole structure to reduce deflection aberrations when the plurality of multipole structures deflects a plurality of charged particle beams.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 2, 2020
    Inventors: Weiming REN, Qian ZHANG, Xuerang HU, Xuedong LIU
  • Publication number: 20200203114
    Abstract: Disclosed herein is an apparatus comprising: a first electrically conductive layer; a second electrically conductive layer; a plurality of optics element s between the first electrically conductive layer and the second electrically conductive layer, wherein the plurality of optics elements are configured to influence a plurality of beams of charged particles; a third electrically conductive layer between the first electrically conductive layer and the second electrically conductive layer; and an electrically insulating layer physically connected to the optics elements, wherein the electrically insulating layer is configured to electrically insulate the optics elements from the first electrically conductive layer, and the second electrically conductive layer.
    Type: Application
    Filed: April 4, 2018
    Publication date: June 25, 2020
    Inventors: Xuerang HU, Weiming REN, Xuedong LIU, Zhong-wei CHEN
  • Publication number: 20200161079
    Abstract: An electromagnetic compound lens may be configured to focus a charged particle beam. The compound lens may include an electrostatic lens provided on a secondary optical axis and a magnetic lens also provided on the secondary optical axis. The magnetic lens may include a permanent magnet. A charged particle optical system may include a beam separator configured to separate a plurality of beamlets of a primary charged particle beam generated by a source along a primary optical axis from secondary beams of secondary charged particles. The system may include a secondary imaging system configured to focus the secondary beams onto a detector along the secondary optical axis. The secondary imaging system may include the compound lens.
    Type: Application
    Filed: November 8, 2019
    Publication date: May 21, 2020
    Inventors: Weiming REN, Xuedong LIU, Xuerang HU, Zhong-wei CHEN
  • Publication number: 20200152421
    Abstract: A multi-beam apparatus for observing a sample with high resolution and high throughput and in flexibly varying observing conditions is proposed. The apparatus uses a movable collimating lens to flexibly vary the currents of the plural probe spots without influencing the intervals thereof, a new source-conversion unit to form the plural images of the single electron source and compensate off-axis aberrations of the plural probe spots with respect to observing conditions, and a pre-beamlet-forming means to reduce the strong Coulomb effect due to the primary-electron beam.
    Type: Application
    Filed: January 3, 2020
    Publication date: May 14, 2020
    Applicant: ASML Netherlands B.V.
    Inventors: Shuai Li, Weiming Ren, Xuedong Liu, Juying Dou, Xuerang Hu, Zhongwei Chen
  • Publication number: 20200152412
    Abstract: A multi-beam apparatus for observing a sample with high resolution and high throughput is proposed. In the apparatus, a source-conversion unit forms plural and parallel images of one single electron source by deflecting plural beamlets of a parallel primary-electron beam therefrom, and one objective lens focuses the plural deflected beamlets onto a sample surface and forms plural probe spots thereon. A movable condenser lens is used to collimate the primary-electron beam and vary the currents of the plural probe spots, a pre-beamlet-forming means weakens the Coulomb effect of the primary-electron beam, and the source-conversion unit minimizes the sizes of the plural probe spots by minimizing and compensating the off-axis aberrations of the objective lens and condenser lens.
    Type: Application
    Filed: August 26, 2019
    Publication date: May 14, 2020
    Inventors: Weiming REN, Xuedong LIU, Xuerang HU, Zhongwei CHEN
  • Publication number: 20200124546
    Abstract: An improved charged particle beam inspection apparatus, and more particularly, a particle beam inspection apparatus including an improved alignment mechanism is disclosed. An improved charged particle beam inspection apparatus may include a second electron detection device to generate one or more images of one or more beam spots of the plurality of secondary electron beams during the alignment mode. The beam spot image may be used to determine the alignment characteristics of one or more of the plurality of secondary electron beams and adjust a configuration of a secondary electron projection system.
    Type: Application
    Filed: October 16, 2019
    Publication date: April 23, 2020
    Inventors: Xuerang HU, Xinan Luo, Qingpo Xi, Xuedong Liu, Weiming Ren
  • Publication number: 20200051779
    Abstract: Systems and methods for observing a sample in a multi-beam apparatus are disclosed. A charged particle optical system may include a deflector configured to form a virtual image of a charged particle source and a transfer lens configured to form a real image of the charged particle source on an image plane. The image plane may be formed at least near a beam separator that is configured to separate primary charged particles generated by the source and secondary charged particles generated by interaction of the primary charged particles with a sample. The image plane may be formed at a deflection plane of the beam separator. The multi-beam apparatus may include a charged-particle dispersion compensator to compensate dispersion of the beam separator. The image plane may be formed closer to the transfer lens than the beam separator, between the transfer lens and the charged-particle dispersion compensator.
    Type: Application
    Filed: August 8, 2019
    Publication date: February 13, 2020
    Inventors: Weiming REN, Xuedong Liu, Xuerang Hu, Zong-wei Chen
  • Patent number: 10541110
    Abstract: A multi-beam apparatus for observing a sample with high resolution and high throughput and in flexibly varying observing conditions is proposed. The apparatus uses a movable collimating lens to flexibly vary the currents of the plural probe spots without influencing the intervals thereof, a new source-conversion unit to form the plural images of the single electron source and compensate off-axis aberrations of the plural probe spots with respect to observing conditions, and a pre-beamlet-forming means to reduce the strong Coulomb effect due to the primary-electron beam.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: January 21, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Shuai Li, Weiming Ren, Xuedong Liu, Juying Dou, Xuerang Hu, Zhongwei Chen
  • Publication number: 20190341222
    Abstract: An improved source conversion unit of a charged particle beam apparatus is disclosed. The source conversion unit comprises a first micro-structure array including a plurality of micro-structures. The plurality of micro-structures is grouped into one or more groups. Corresponding electrodes of micro-structures in one group are electrically connected and driven by a driver to influence a corresponding group of beamlets. The micro-structures in one group may be single-pole structures or multi-pole structures. The micro-structures in one group have same or substantially same radial shifts from an optical axis of the apparatus. The micro-structures in one group have same or substantially same orientation angles with respect to their radial shift directions.
    Type: Application
    Filed: May 1, 2019
    Publication date: November 7, 2019
    Inventors: Xuerang HU, Xuedong LIU, Zhong-wei CHEN, Weiming REN
  • Publication number: 20190333732
    Abstract: The present disclosure proposes an anti-rotation lens and using it as an anti-rotation condenser lens in a multi-beam apparatus with a pre-beamlet-forming mechanism. The anti-rotation condenser lens keeps rotation angles of beamlets unchanged when changing currents thereof, and thereby enabling the pre-beamlet-forming mechanism to cut off electrons not in use as much as possible. In this way, the multi-beam apparatus can observe a sample with high resolution and high throughput, and is competent as a yield management tool to inspect and/or review defects on wafers/masks in semiconductor manufacturing industry.
    Type: Application
    Filed: December 22, 2017
    Publication date: October 31, 2019
    Inventors: Weiming REN, Xuedong LIU, Xuerang HU, Zhong-wei CHEN
  • Publication number: 20190279844
    Abstract: The present disclosure proposes a crossover-forming deflector array of an electro-optical system for directing a plurality of electron beams onto an electron detection device. The crossover-forming deflector array includes a plurality of crossover-forming deflectors positioned at or at least near an image plane of a set of one or more electro-optical lenses of the electro-optical system, wherein each crossover-forming deflector is aligned with a corresponding electron beam of the plurality of electron beams.
    Type: Application
    Filed: March 7, 2019
    Publication date: September 12, 2019
    Inventors: Weiming REN, Xuedong LIU, Xuerang HU, Zhong-wei CHEN
  • Patent number: 10395886
    Abstract: A multi-beam apparatus for observing a sample with high resolution and high throughput is proposed. In the apparatus, a source-conversion unit forms plural and parallel images of one single electron source by deflecting plural beamlets of a parallel primary-electron beam therefrom, and one objective lens focuses the plural deflected beamlets onto a sample surface and forms plural probe spots thereon. A movable condenser lens is used to collimate the primary-electron beam and vary the currents of the plural probe spots, a pre-beamlet-forming means weakens the Coulomb effect of the primary-electron beam, and the source-conversion unit minimizes the sizes of the plural probe spots by minimizing and compensating the off-axis aberrations of the objective lens and condenser lens.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: August 27, 2019
    Assignee: ASML Netherlands B.V.
    Inventors: Weiming Ren, Xuedong Liu, Xuerang Hu, Zhongwei Chen
  • Publication number: 20190172677
    Abstract: A secondary projection imaging system in a multi-beam apparatus is proposed, which makes the secondary electron detection with high collection efficiency and low cross-talk. The system employs one zoom lens, one projection lens and one anti-scanning deflection unit. The zoom lens and the projection lens respectively perform the zoom function and the anti-rotating function to remain the total imaging magnification and the total image rotation with respect to the landing energies and/or the currents of the plural primary beamlets. The anti-scanning deflection unit performs the anti-scanning function to eliminate the dynamic image displacement due to the deflection scanning of the plural primary beamlets.
    Type: Application
    Filed: November 26, 2018
    Publication date: June 6, 2019
    Inventors: Weiming REN, Xuedong LIU, Xuerang HU, Zhongwei CHEN
  • Publication number: 20190035595
    Abstract: Systems and methods are provided for compensating dispersion of a beam separator in a single-beam or multi-beam apparatus. Embodiments of the present disclosure provide a dispersion device comprising an electrostatic deflector and a magnetic deflector configured to induce a beam dispersion set to cancel the dispersion generated by the beam separator. The combination of the electrostatic deflector and the magnetic deflector can be used to keep the deflection angle due to the dispersion device unchanged when the induced beam dispersion is changed to compensate for a change in the dispersion generated by the beam separator. In some embodiments, the deflection angle due to the dispersion device can be controlled to be zero and there is no change in primary beam axis due to the dispersion device.
    Type: Application
    Filed: July 27, 2018
    Publication date: January 31, 2019
    Inventors: Weiming REN, Xuedong Liu, Xuerang Hu, Xinan Luo, Zhongwei Chen
  • Publication number: 20180350555
    Abstract: A multi-beam apparatus for observing a sample with high resolution and high throughput and in flexibly varying observing conditions is proposed. The apparatus uses a movable collimating lens to flexibly vary the currents of the plural probe spots without influencing the intervals thereof, a new source-conversion unit to form the plural images of the single electron source and compensate off-axis aberrations of the plural probe spots with respect to observing conditions, and a pre-beamlet-forming means to reduce the strong Coulomb effect due to the primary-electron beam.
    Type: Application
    Filed: March 19, 2018
    Publication date: December 6, 2018
    Inventors: Shuai LI, Weiming REN, Xuedong LIU, Juying DOU, Xuerang HU, Zhongwei CHEN