Patents by Inventor Yahru CHENG

Yahru CHENG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11971657
    Abstract: A photoresist developer includes a solvent having Hansen solubility parameters of 15<?d<25, 10<?p<25, and 6<?p<30; an acid having an acid dissociation constant, pKa, of ?15<pKa<4, or a base having a pKa of 40>pKa>9.5; and a chelate.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: April 30, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: An-Ren Zi, Chin-Hsiang Lin, Ching-Yu Chang, Yahru Cheng
  • Patent number: 11942322
    Abstract: In a method of manufacturing a semiconductor device, a metallic photoresist layer is formed over a target layer to be patterned, the metallic photoresist layer is selectively exposed to actinic radiation to form a latent pattern, and the latent pattern is developed by applying a developer to the selectively exposed photoresist layer to form a pattern. The metallic photo resist layer is an alloy layer of two or more metal elements, and the selective exposure changes a phase of the alloy layer.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: March 26, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: An-Ren Zi, Chun-Chih Ho, Yahru Cheng, Ching-Yu Chang
  • Patent number: 11901189
    Abstract: To reduce a thickness variation of a spin-on coating (SOC) layer that is applied over a plurality of first and second trenches with different pattern densities as a bottom layer in a photoresist stack, a two-step thermal treatment process is performed on the SOC layer. A first thermal treatment step in the two-step thermal treatment process is conducted at a first temperature below a cross-linking temperature of the SOC layer to cause flow of the SOC layer, and a second thermal treatment step in the two-step thermal treatment process is conducted at a second temperature to cause cross-linking of the SOC layer.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: February 13, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chen-Fong Tsai, Ya-Lun Chen, Tsai-Yu Huang, Yahru Cheng, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20230386840
    Abstract: In a method of manufacturing a semiconductor device, a metallic photoresist layer is formed over a target layer to be patterned, the metallic photoresist layer is selectively exposed to actinic radiation to form a latent pattern, and the latent pattern is developed by applying a developer to the selectively exposed photoresist layer to form a pattern. The metallic photo resist layer is an alloy layer of two or more metal elements, and the selective exposure changes a phase of the alloy layer.
    Type: Application
    Filed: August 10, 2023
    Publication date: November 30, 2023
    Inventors: An-Ren ZI, Chun-Chih HO, Yahru CHENG, Ching-Yu CHANG
  • Publication number: 20230384669
    Abstract: Photoresist materials described herein may include various types of tin (Sn) clusters having one or more types of ligands. As an example, a photoresist material described herein may include tin clusters bearing two or more different types of carboxylate ligands. As another example, a photoresist material described herein may include tin oxide clusters that include carbonate ligands. The two or more different types of carboxylate ligands and the carbonate ligands may reduce, minimize, and/or prevent crystallization of the photoresist materials described herein, which may increase the coating performance of the photoresist materials and may decrease the surface roughness of photoresist layers formed using the photoresist materials described herein.
    Type: Application
    Filed: August 10, 2023
    Publication date: November 30, 2023
    Inventors: Ming-Hui WENG, Yahru CHENG, Ching-Yu CHANG
  • Publication number: 20230386852
    Abstract: To reduce a thickness variation of a spin-on coating (SOC) layer that is applied over a plurality of first and second trenches with different pattern densities as a bottom layer in a photoresist stack, a two-step thermal treatment process is performed on the SOC layer. A first thermal treatment step in the two-step thermal treatment process is conducted at a first temperature below a cross-linking temperature of the SOC layer to cause flow of the SOC layer, and a second thermal treatment step in the two-step thermal treatment process is conducted at a second temperature to cause cross-linking of the SOC layer.
    Type: Application
    Filed: August 8, 2023
    Publication date: November 30, 2023
    Inventors: Chen-Fong TSAI, Ya-Lun CHEN, Tsai-Yu HUANG, Yahru CHENG, Huicheng CHANG, Yee-Chia YEO
  • Publication number: 20230375920
    Abstract: A method of manufacturing a semiconductor device includes forming a photoresist layer over a substrate, including combining a first precursor and a second precursor in a vapor state to form a photoresist material, and depositing the photoresist material over the substrate. A protective layer is formed over the photoresist layer. The photoresist layer is selectively exposed to actinic radiation through the protective layer to form a latent pattern in the photoresist layer. The protective layer is removed, and the latent pattern is developed by applying a developer to the selectively exposed photoresist layer to form a pattern.
    Type: Application
    Filed: August 3, 2023
    Publication date: November 23, 2023
    Inventors: Ming-Hui WENG, Chen-Yu LIU, Chih-Cheng LIU, Yi-Chen KUO, Jia-Lin WEI, Yen-Yu CHEN, Jr-Hung LI, Yahru CHENG, Chi-Ming YANG, Tze-Liang LEE, Ching-Yu CHANG
  • Publication number: 20230377883
    Abstract: A system and method utilize directed self-assembly films, including block copolymers and solvents, to form features on a wafer. The solvents have high boiling points. The high boiling points of the solvents enable directed self-assembly processes to utilize very high temperature, rapid thermal annealing processes to generate a pattern of first and second polymer structures over a wafer from the directed self-assembly films. The pattern of the first and second polymer structures can be utilized to form the features on the wafer.
    Type: Application
    Filed: May 20, 2022
    Publication date: November 23, 2023
    Inventors: Yu-Ling CHANG CHIEN, Yu-Chung SU, Yahru CHENG, Ching-Yu CHANG, Chin-Hsiang LIN
  • Patent number: 11822237
    Abstract: A method of manufacturing a semiconductor device includes forming a photoresist layer over a substrate, including combining a first precursor and a second precursor in a vapor state to form a photoresist material, and depositing the photoresist material over the substrate. A protective layer is formed over the photoresist layer. The photoresist layer is selectively exposed to actinic radiation through the protective layer to form a latent pattern in the photoresist layer. The protective layer is removed, and the latent pattern is developed by applying a developer to the selectively exposed photoresist layer to form a pattern.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: November 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ming-Hui Weng, Chen-Yu Liu, Chih-Cheng Liu, Yi-Chen Kuo, Jia-Lin Wei, Yen-Yu Chen, Jr-Hung Li, Yahru Cheng, Chi-Ming Yang, Tze-Liang Lee, Ching-Yu Chang
  • Publication number: 20230369048
    Abstract: A method of manufacturing semiconductor device includes forming a multilayer photoresist structure including a metal-containing photoresist over a substrate. The multilayer photoresist structure includes two or more metal-containing photoresist layers having different physical parameters. The metal-containing photoresist is a reaction product of a first precursor and a second precursor, and each layer of the multilayer photoresist structure is formed using different photoresist layer formation parameters. The different photoresist layer formation parameters are one or more selected from the group consisting of the first precursor, an amount of the first precursor, the second precursor, an amount of the second precursor, a length of time each photoresist layer formation operation, and heating conditions of the photoresist layers.
    Type: Application
    Filed: July 27, 2023
    Publication date: November 16, 2023
    Inventors: Jia-Lin WEI, Ming-Hui Weng, Chih-Cheng Liu, Yi-Chen Kuo, Yen-Yu Chen, Yahru Cheng, Jr-Hung Li, Ching-Yu Chang, Tze-Liang Lee, Chi-Ming Yang
  • Publication number: 20230326754
    Abstract: A method of forming a pattern in a photoresist layer includes forming a photoresist layer over a substrate, and reducing moisture or oxygen absorption characteristics of the photoresist layer. The photoresist layer is selectively exposed to actinic radiation to form a latent pattern, and the latent pattern is developed by applying a developer to the selectively exposed photoresist layer to form a pattern.
    Type: Application
    Filed: May 31, 2023
    Publication date: October 12, 2023
    Inventors: Yi-Chen KUO, Chih-Cheng Liu, Ming-Hui Weng, Jia-Lin Wei, Yen-Yu Chen, Jr-Hung Li, Yahru Cheng, Chi-Ming Yang, Tze-Liang Lee, Ching-Yu Chang
  • Patent number: 11784046
    Abstract: A method of manufacturing semiconductor device includes forming a multilayer photoresist structure including a metal-containing photoresist over a substrate. The multilayer photoresist structure includes two or more metal-containing photoresist layers having different physical parameters. The metal-containing photoresist is a reaction product of a first precursor and a second precursor, and each layer of the multilayer photoresist structure is formed using different photoresist layer formation parameters. The different photoresist layer formation parameters are one or more selected from the group consisting of the first precursor, an amount of the first precursor, the second precursor, an amount of the second precursor, a length of time each photoresist layer formation operation, and heating conditions of the photoresist layers.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: October 10, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jia-Lin Wei, Ming-Hui Weng, Chih-Cheng Liu, Yi-Chen Kuo, Yen-Yu Chen, Yahru Cheng, Jr-Hung Li, Ching-Yu Chang, Tze-Liang Lee, Chi-Ming Yang
  • Publication number: 20230242115
    Abstract: The present disclosure describes a method of forming an intermediate spacer structure between a gate structure and a source/drain (S/D) contact structure and removing a top portion of the intermediate spacer structure to form a recess. The intermediate spacer structure includes a first spacer layer, a second spacer layer, and a sacrificial spacer layer between the first spacer layer and the second spacer layer. The method further includes removing the sacrificial spacer layer to form an air gap between the first spacer layer and the second spacer layer and spinning a dielectric layer on the air gap, the first spacer layer, and the second spacer layer to fill in the recess and seal the air gap. The dielectric layer includes raw materials for a spin-on dielectric material.
    Type: Application
    Filed: April 10, 2023
    Publication date: August 3, 2023
    Applicant: Taiwan Semiconductor For Manufactuing Co., Ltd.
    Inventors: Ting-Ting CHEN, Chen-Han Wang, Keng-Chu Lin, Shuen-Shin Liang, Tsu-Hsiu Perng, Tsai-Jung Ho, Tsung-Han Ko, Tetsuji Ueno, Yahru Cheng
  • Patent number: 11703762
    Abstract: A method of generating a layout pattern includes disposing a photoresist layer of a resist material on a substrate and disposing a top layer over of the photoresist layer. The top layer is transparent for extreme ultraviolet (EUV) radiation and the top layer is opaque for deep ultraviolet (DUV) radiation. The method further includes irradiating the photoresist layer with radiation generated from an EUV radiation source. The radiation passes through the top layer to expose the photoresist layer.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: July 18, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Tsung Shih, Chen-Ming Wang, Yahru Cheng, Bo-Tsun Liu, Tsung Chuan Lee
  • Patent number: 11705332
    Abstract: A method of forming a pattern in a photoresist layer includes forming a photoresist layer over a substrate, and reducing moisture or oxygen absorption characteristics of the photoresist layer. The photoresist layer is selectively exposed to actinic radiation to form a latent pattern, and the latent pattern is developed by applying a developer to the selectively exposed photoresist layer to form a pattern.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: July 18, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Chen Kuo, Chih-Cheng Liu, Ming-Hui Weng, Jia-Lin Wei, Yen-Yu Chen, Jr-Hung Li, Yahru Cheng, Chi-Ming Yang, Tze-Liang Lee, Ching-Yu Chang
  • Publication number: 20230161240
    Abstract: In a method of manufacturing a reflective mask, an adhesion layer is formed over a mask blank. The mask blank includes a substrate, a reflective multilayer disposed over the substrate, a capping layer disposed over the reflective multilayer, an absorber layer disposed over the capping layer, and a hard mask layer disposed over the absorber layer. A photoresist pattern is formed over the adhesion layer, the adhesion layer is patterned, the hard mask layer is patterned, and the absorber layer is patterned using the patterned hard mask layer as an etching mask. The photoresist layer has a higher adhesiveness to the adhesion layer than to the hard mask layer.
    Type: Application
    Filed: May 4, 2022
    Publication date: May 25, 2023
    Inventors: Wei-Che HSIEH, Chia-Ching CHU, Ya-Lun CHEN, Yu-Chung SU, Tzu-Yi WANG, Yahru CHENG, Ta-Cheng LIEN, Hsin-Chang LEE, Ching-Yu CHANG
  • Patent number: 11626482
    Abstract: The present disclosure describes a method of forming an intermediate spacer structure between a gate structure and a source/drain (S/D) contact structure and removing a top portion of the intermediate spacer structure to form a recess. The intermediate spacer structure includes a first spacer layer, a second spacer layer, and a sacrificial spacer layer between the first spacer layer and the second spacer layer. The method further includes removing the sacrificial spacer layer to form an air gap between the first spacer layer and the second spacer layer and spinning a dielectric layer on the air gap, the first spacer layer, and the second spacer layer to fill in the recess and seal the air gap. The dielectric layer includes raw materials for a spin-on dielectric material.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: April 11, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ting-Ting Chen, Chen-Han Wang, Keng-Chu Lin, Shuen-Shin Liang, Tsu-Hsiu Perng, Tsai-Jung Ho, Tsung-Han Ko, Tetsuji Ueno, Yahru Cheng
  • Publication number: 20230087992
    Abstract: Photosensitive polymers and their use in photoresists for photolithographic processes are disclosed. The polymers are copolymers, with at least one monomer that includes pendant polycyclic aromatic groups and a second monomer that includes an acidic leaving group (ALG). The polymers have high resistance to etching and high development contrast.
    Type: Application
    Filed: March 15, 2022
    Publication date: March 23, 2023
    Inventors: Wei-Che Hsieh, Yu-Chung Su, Chia-Ching Chu, Tzu-Yi Wang, Ta-Cheng Lien, Hsin-Chang Lee, Ching-Yu Chang, Yahru Cheng
  • Publication number: 20230072538
    Abstract: A method of manufacturing a semiconductor device includes forming a photoresist layer over a substrate. A first precursor and a second precursor are combined. The first precursor is an organometallic having a formula: MaRbXc, where M is one or more of Sn, Bi, Sb, In, and Te, R is one or more of a C7-C11 aralkyl group, a C3-C10 cycloalkyl group, a C2-C10 alkoxy group, and a C2-C10 alkylamino group, X is one or more of a halogen, a sulfonate group, and an alkylamino group, and 1?a?2, b?1, c?1, and b+c?4, and the second precursor is one or more of water, an amine, a borane, and a phosphine. The photoresist layer is selectively exposed to actinic radiation to form a latent pattern. The latent pattern is developed by applying a developer to the selectively exposed photoresist layer.
    Type: Application
    Filed: October 22, 2022
    Publication date: March 9, 2023
    Inventors: Chih-Cheng LIU, Ming-Hui WENG, Jr-Hung LI, Yahru CHENG, Chi-Ming YANG, Tze-Liang LEE, Ching-Yu CHANG
  • Publication number: 20230012705
    Abstract: A method for forming a semiconductor device is provided. The method includes applying a photoresist composition over a substrate, thereby forming a photoresist layer over the substrate; performing a first baking process to the photoresist layer; exposing the photoresist layer to an extreme ultraviolet (EUV) radiation, thereby forming a pattern therein; performing a second baking process to the photoresist layer; and developing the photoresist layer having the pattern therein using a developer, thereby forming a patterned photoresist layer. The first baking process and the second baking process are conducted under an ambient atmosphere having a humidity level ranging from 55% to 100%.
    Type: Application
    Filed: January 21, 2022
    Publication date: January 19, 2023
    Inventors: An-Ren ZI, Yahru CHENG, Ching-Yu CHANG, Chin-Hsiang LIN