Patents by Inventor Yair Alpern

Yair Alpern has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11977169
    Abstract: A LIDAR system has a laser emission unit configured to generate a plurality of laser beams. The LIDAR system also has an optical system configured to transmit the plurality of laser beams from the laser emission unit to a common scanning unit. The common scanning unit is configured to project the plurality of laser beams toward a field of view of the LIDAR system to simultaneously scan the field of view along a plurality of scan lines traversing the field of view.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: May 7, 2024
    Assignee: INNOVIZ TECHNOLOGIES LTD.
    Inventors: Ronen Eshel, Omer Keilaf, David Elooz, Lior Atias, Harel Yosef Shfaram, Nir Goren, Idan Bakish, Yuval Yifat, Itay Tehori, Roi Mautner, Yair Alpern
  • Patent number: 11962748
    Abstract: Apparatus for generating a dynamic structured light pattern for optical tracking in three-dimensional space, comprises an array of lasers, such as a VCSEL laser array, to project light in a pattern into a three-dimensional space; and an optical element or elements arranged in cells. The cells are aligned with subsets of the laser array, and each cell individually applies a modulation, in particular an intensity modulation, to light from the laser or lasers of the subset, to provide a distinguishable and separately controllable part of the dynamic structured light pattern. A method of generating a structured light pattern is disclosed, in which light is provided from an array of lasers, and light is individually projected from subsets of the array of lasers to provide differentiated parts of the structured light pattern.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: April 16, 2024
    Assignee: Meta Platforms Technologies, LLC
    Inventors: Nitay Romano, Nadav Grossinger, Yair Alpern, Emil Alon
  • Publication number: 20230251383
    Abstract: A LIDAR system including a MEMS scanning device is disclosed. The LIDAR system includes a light source, a light deflector, a sensor, and a processor. The light deflector deflects light from the light source or light received from an environment outside a vehicle in which the LIDAR system is installed. The sensor detects the light received from the light source or the environment. The processor determines a distance of one or more objects in the environment from the vehicle based on the signals from the sensor. The light deflector includes one or more actuators, which include one or more actuating arms. Connectors connect the actuating arms to an MEMS mirror or other deflector. The actuating arms move when subjected to an electrical field in the form of a voltage or current. Movement of the actuating arms causes movement of the MEMS mirror or deflector causing it to deflect light.
    Type: Application
    Filed: April 19, 2023
    Publication date: August 10, 2023
    Applicant: INNOVIZ TECHNOLOGIES LTD.
    Inventors: Matityahu SHANI, David ELOOZ, Idan BAKISH, Michael GIRGEL, Moshe MEDINA, Sason SOURANI, Yair ALPERN, Smadar David RALY
  • Patent number: 11706380
    Abstract: A radiometric camera having internal black body components and a method for calibrating a radiometric camera having internal black body components. A radiometric camera includes a detector, the detector further including a thermal detector configured to capture thermal images, wherein the thermal detector is pointed in a direction, wherein the radiometric camera is adapted to receive at least one black body element in front of the detector with respect to the direction of the thermal detector, the thermal detector having a plurality of portions including at least one first portion, wherein the at least one black body element affects radiation readings by the at least one first portion of a plurality of portions of the thermal detector when disposed in the radiometric camera.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: July 18, 2023
    Assignee: ADASKY, LTD.
    Inventors: Oleg Kuybeda, Igor Ivanov, Yair Alpern, Vitaly Kuperman, Neta Sherer
  • Patent number: 11662467
    Abstract: A LIDAR system including a MEMS scanning device is disclosed. The LIDAR system includes a light source, a light deflector, a sensor, and a processor. The light deflector deflects light from the light source or light received from an environment outside a vehicle in which the LIDAR system is installed. The sensor detects the light received from the light source or the environment. The processor determines a distance of one or more objects in the environment from the vehicle based on the signals from the sensor. The light deflector includes one or more actuators, which include one or more actuating arms. Connectors connect the actuating arms to an MEMS mirror or other deflector. The actuating arms move when subjected to an electrical field in the form of a voltage or current. Movement of the actuating arms causes movement of the MEMS mirror or deflector causing it to deflect light.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: May 30, 2023
    Assignee: INNOVIZ TECHNOLOGIES LTD.
    Inventors: Matityahu Shani, David Elooz, Idan Bakish, Michael Girgel, Moshe Medina, Sason Sourani, Yair Alpern, Smadar David Raly
  • Publication number: 20220404471
    Abstract: An electro-optical system may include a light source configured to emit a beam of radiation, and a pivotable scanning mirror configured to project the beam of radiation toward a field of view. The electro-optical system may also include a first electrode associated with the scanning mirror, and a plurality of second electrodes spaced apart from the first electrode. The electro-optical system may further include a processor programmed to determine a capacitance value for each of the second electrodes relative to the first electrode. Each of the determined capacitance values may have an accuracy in a range of ± 1/100 to ± 1/1000 of a difference between a highest capacitance value and a lowest capacitance value between the first electrode and a respective one of the second electrodes. The processor may also be programmed to determine an orientation of the scanning mirror based on one or more of the determined capacitance values.
    Type: Application
    Filed: September 17, 2020
    Publication date: December 22, 2022
    Applicant: INNOVIZ TECHNOLOGIES LTD.
    Inventors: Yair Alpern, Michael Girgel, Nir Goren, Yuval Stern, John Miller, Sason Sourani
  • Publication number: 20220276345
    Abstract: A LIDAR system has a laser emission unit configured to generate a plurality of laser beams. The LIDAR system also has an optical system configured to transmit the plurality of laser beams from the laser emission unit to a common scanning unit. The common scanning unit is configured to project the plurality of laser beams toward a field of view of the LIDAR system to simultaneously scan the field of view along a plurality of scan lines traversing the field of view.
    Type: Application
    Filed: February 9, 2022
    Publication date: September 1, 2022
    Applicant: INNOVIZ TECHNOLOGIES LTD.
    Inventors: Ronen ESHEL, Omer KEILAF, David ELOOZ, Lior ATIAS, Harel Yosef SHFARAM, Nir GOREN, Idan BAKISH, Yuval YIFAT, Itay TEHORI, Roi MAUTNER, Yair ALPERN
  • Publication number: 20220229164
    Abstract: A time-of-flight (TOF) optical sensor may include a controller, a sensing array, and a readout unit. The sensing array may include a plurality of sensing cells. The readout unit may include a plurality of readout TOF modules. The number of the plurality of readout TOF modules may be less than the number of the plurality of sensing cells. The controller may be configured to trigger a connection of a first sensing cell of the plurality of sensing cells to a first readout TOF module of the plurality of readout TOF modules at a first time during a sampling period, thereby enabling the first readout TOF module to provide a first measurement of a change in output of the first sensing cell.
    Type: Application
    Filed: June 5, 2020
    Publication date: July 21, 2022
    Applicant: INNOVIZ TECHNOLOGIES LTD.
    Inventors: Amit STEINBERG, Ronen ESHEL, Yair ALPERN, Nir Avraham GOREN
  • Publication number: 20220163633
    Abstract: A LIDAR system may include at least one processor configured to control at least one light source for emitting a light flux. The at least one processor may also be configured to control a light deflector to deflect light from the at least one light source in order to scan a field of view. The at least one processor may further be configured to detect an object within the field of view based on first reflections from the field of view received by at least one sensor. The at least one processor may also be configured to determine a first position of the light deflector based on second reflections from the field of view received by a plurality of detector cells, and control a repositioning of the light deflector to a second position based on the first position of the light deflector and an intended illumination location.
    Type: Application
    Filed: April 2, 2020
    Publication date: May 26, 2022
    Inventors: Amit STEINBERG, Yair ALPERN
  • Publication number: 20220086370
    Abstract: A radiometric camera having internal black body components and a method for calibrating a radiometric camera having internal black body components. A radiometric camera includes a detector, the detector further including a thermal detector configured to capture thermal images, wherein the thermal detector is pointed in a direction, wherein the radiometric camera is adapted to receive at least one black body element in front of the detector with respect to the direction of the thermal detector, the thermal detector having a plurality of portions including at least one first portion, wherein the at least one black body element affects radiation readings by the at least one first portion of a plurality of portions of the thermal detector when disposed in the radiometric camera.
    Type: Application
    Filed: September 17, 2020
    Publication date: March 17, 2022
    Applicant: Adasky, Ltd.
    Inventors: Oleg KUYBEDA, Igor IVANOV, Yair ALPERN, Vitaly KUPERMAN, Neta SHERER
  • Publication number: 20220011165
    Abstract: A method and system for estimating core temperature of objects are provided. The method includes receiving an external temperature of the at least one object using the radiometric camera; capturing ancillary parameters indicative of at least environmental conditions in an area where a radiometric camera is deployed; identifying at least one object shown in an input image stream; and estimating a core temperature of each of the at least one object based on the external temperature measured for each of the at least one object by the radiometric camera and the ancillary parameters, wherein the estimated core temperature is indicative of an elevated temperature of an object.
    Type: Application
    Filed: July 7, 2020
    Publication date: January 13, 2022
    Applicant: Adasky, Ltd.
    Inventors: Oleg KUYBEDA, Igor IVANOV, Yonatan DISHON, Yair ALPERN
  • Publication number: 20210341729
    Abstract: A microelectromechanical system (MEMS) mirror assembly may comprise a frame and a MEMS mirror coupled to the frame. The MEMS mirror assembly may also include at least one piezoelectric actuator including a body and a piezoelectric element. When subjected to an electrical field, the piezoelectric element may be configured to bend the body, thereby moving the MEMS mirror with respect to a plane of the frame. The MEMS mirror assembly may further include at least one heating resistor configured to heat the piezoelectric element when an electric current passes through the at least one heating resistor.
    Type: Application
    Filed: October 3, 2019
    Publication date: November 4, 2021
    Applicant: Innoviz Technologies Ltd.
    Inventors: Yair ALPERN, Michael GIRGEL
  • Publication number: 20210297651
    Abstract: Apparatus for generating a dynamic structured light pattern for optical tracking in three-dimensional space, comprises an array of lasers, such as a VCSEL laser array, to project light in a pattern into a three-dimensional space; and an optical element or elements arranged in cells. The cells are aligned with subsets of the laser array, and each cell individually applies a modulation, in particular an intensity modulation, to light from the laser or lasers of the subset, to provide a distinguishable and separately controllable part of the dynamic structured light pattern. A method of generating a structured light pattern is disclosed, in which light is provided from an array of lasers, and light is individually projected from subsets of the array of lasers to provide differentiated parts of the structured light pattern.
    Type: Application
    Filed: June 4, 2021
    Publication date: September 23, 2021
    Inventors: Nitay Romano, Nadav Grossinger, Yair Alpern, Emil Alon
  • Patent number: 11057610
    Abstract: Apparatus for generating a dynamic structured light pattern for optical tracking in three-dimensional space, comprises an array of lasers, such as a VCSEL laser array, to project light in a pattern into a three-dimensional space; and an optical element or elements arranged in cells. The cells are aligned with subsets of the laser array, and each cell individually applies a modulation, in particular an intensity modulation, to light from the laser or lasers of the subset, to provide a distinguishable and separately controllable part of the dynamic structured light pattern. A method of generating a structured light pattern is disclosed, in which light is provided from an array of lasers, and light is individually projected from subsets of the array of lasers to provide differentiated parts of the structured light pattern.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: July 6, 2021
    Assignee: Facebook Technologies, LLC
    Inventors: Nitay Romano, Nadav Grossinger, Yair Alpern, Emil Alon
  • Publication number: 20200393545
    Abstract: A LIDAR system including a MEMS scanning device is disclosed. The LIDAR system includes a light source, a light deflector, a sensor, and a processor. The light deflector deflects light from the light source or light received from an environment outside a vehicle in which the LIDAR system is installed. The sensor detects the light received from the light source or the environment. The processor determines a distance of one or more objects in the environment from the vehicle based on the signals from the sensor. The light deflector includes one or more actuators, which include one or more actuating arms. Connectors connect the actuating arms to an MEMS mirror or other deflector. The actuating arms move when subjected to an electrical field in the form of a voltage or current. Movement of the actuating arms causes movement of the MEMS mirror or deflector causing it to deflect light.
    Type: Application
    Filed: November 28, 2018
    Publication date: December 17, 2020
    Applicant: INNOVIZ TECHNOLOGIES LTD.
    Inventors: Matityahu SHANI, David ELOOZ, Idan BAKISH, Michael GIRGEL, Moshe MEDINA, Sasan SOURANI, Yair ALPERN, Smadar David RALY
  • Publication number: 20200267377
    Abstract: Apparatus for generating a dynamic structured light pattern for optical tracking in three-dimensional space, comprises an array of lasers, such as a VCSEL laser array, to project light in a pattern into a three-dimensional space; and an optical element or elements arranged in cells. The cells are aligned with subsets of the laser array, and each cell individually applies a modulation, in particular an intensity modulation, to light from the laser or lasers of the subset, to provide a distinguishable and separately controllable part of the dynamic structured light pattern. A method of generating a structured light pattern is disclosed, in which light is provided from an array of lasers, and light is individually projected from subsets of the array of lasers to provide differentiated parts of the structured light pattern.
    Type: Application
    Filed: April 27, 2020
    Publication date: August 20, 2020
    Inventors: Nitay Romano, Nadav Grossinger, Yair Alpern, Emil Alon
  • Patent number: 10687047
    Abstract: Apparatus for generating a dynamic structured light pattern for optical tracking in three-dimensional space, comprises an array of lasers, such as a VCSEL laser array, to project light in a pattern into a three-dimensional space; and an optical element or elements arranged in cells. The cells are aligned with subsets of the laser array, and each cell individually applies a modulation, in particular an intensity modulation, to light from the laser or lasers of the subset, to provide a distinguishable and separately controllable part of the dynamic structured light pattern. A method of generating a structured light pattern is disclosed, in which light is provided from an array of lasers, and light is individually projected from subsets of the array of lasers to provide differentiated parts of the structured light pattern.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: June 16, 2020
    Assignee: Facebook Technologies, LLC
    Inventors: Nitay Romano, Nadav Grossinger, Yair Alpern, Emil Alon
  • Publication number: 20190271769
    Abstract: Systems and methods are provided related to LIDAR technology. In one implementation, a vibration suppression system for a LIDAR configured for use on a vehicle includes at least one processor configured to: control at least one light source in a manner enabling light flux of light from the at least one light source to vary over scans of a field of view; control positioning of at least one light deflector to deflect light from the at least one light source in order to scan the field of view; obtain data indicative of vibrations of the vehicle; based on the obtained data, determine adjustments to the positioning of the at least one light deflector for compensating for the vibrations of the vehicle; and implement the determined adjustments to the positioning of the at least one light deflector to thereby suppress on the at least one light deflector, at least part of an influence of the vibrations of the vehicle on the scanning of the field of view.
    Type: Application
    Filed: March 19, 2019
    Publication date: September 5, 2019
    Applicant: Innoviz Technologies Ltd.
    Inventors: Smadar David Raly, Julian Vlaiko, Moshe Medina, Nir Kahana, Omer David Keilaf, Ronen Eshel, Yair Alpern
  • Publication number: 20180324412
    Abstract: Apparatus for generating a dynamic structured light pattern for optical tracking in three-dimensional space, comprises an array of lasers, such as a VCSEL laser array, to project light in a pattern into a three-dimensional space; and an optical element or elements arranged in cells. The cells are aligned with subsets of the laser array, and each cell individually applies a modulation, in particular an intensity modulation, to light from the laser or lasers of the subset, to provide a distinguishable and separately controllable part of the dynamic structured light pattern. A method of generating a structured light pattern is disclosed, in which light is provided from an array of lasers, and light is individually projected from subsets of the array of lasers to provide differentiated parts of the structured light pattern.
    Type: Application
    Filed: July 11, 2018
    Publication date: November 8, 2018
    Inventors: Nitay Romano, Nadav Grossinger, Yair Alpern, Emil Alon
  • Patent number: 10091494
    Abstract: Apparatus for generating a dynamic structured light pattern for optical tracking in three-dimensional space, comprises an array of lasers, such as a VCSEL laser array, to project light in a pattern into a three-dimensional space; and an optical element or elements arranged in cells. The cells are aligned with subsets of the laser array, and each cell individually applies a modulation, in particular an intensity modulation, to light from the laser or lasers of the subset, to provide a distinguishable and separately controllable part of the dynamic structured light pattern. A method of generating a structured light pattern is disclosed, in which light is provided from an array of lasers, and light is individually projected from subsets of the array of lasers to provide differentiated parts of the structured light pattern.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: October 2, 2018
    Assignee: Facebook, Inc.
    Inventors: Nitay Romano, Nadav Grossinger, Yair Alpern, Emil Alon