Patents by Inventor Yan-You Lin

Yan-You Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11980885
    Abstract: A microfluidic device includes first and second substrate structures. The first substrate structure has a first substrate surface configured to receive one or more droplets. A plurality of electrodes configured to apply an electric field to the droplets. The second substrate structure has a second substrate surface facing the first substrate surface and spaced apart from the first substrate surface to form a fluid channel. The microfluidic device has a first heating element adjacent to the first substrate structure and disposed on an opposite side of the first substrate surface, and a second heating element adjacent to the second substrate structure and disposed on an opposite side of the second substrate surface. The microfluidic device further includes one or more temperature sensors disposed adjacent to the fluid channel between the first substrate structure and the second substrate structure.
    Type: Grant
    Filed: April 18, 2023
    Date of Patent: May 14, 2024
    Assignee: MGI Holdings Co., Limited
    Inventors: Yan-You Lin, Jian Gong, Frank Zhong
  • Publication number: 20240066522
    Abstract: An apparatus for forming a plurality of microdroplets from a droplet includes a substrate, a dielectric layer on the substrate and having a plurality of hydrophilic surface regions spaced apart from each other by a hydrophobic surface, and a plurality of electrodes covered by the dielectric layer. The electrodes are configured to form an electric field across the droplet in response to voltages provided by a control circuit to move the droplet across the dielectric layer in a lateral direction while leaving portions of the droplet on the hydrophilic surface regions to form the plurality of microdroplets on the hydrophilic surface regions.
    Type: Application
    Filed: November 7, 2023
    Publication date: February 29, 2024
    Inventors: Jian Gong, Liang Wang, Yan-You Lin, Cheng Frank Zhong
  • Patent number: 11865543
    Abstract: An apparatus for forming a plurality of microdroplets from a droplet includes a substrate, a dielectric layer on the substrate and having a plurality of hydrophilic surface regions spaced apart from each other by a hydrophobic surface, and a plurality of electrodes covered by the dielectric layer. The electrodes are configured to form an electric field across the droplet in response to voltages provided by a control circuit to move the droplet across the dielectric layer in a lateral direction while leaving portions of the droplet on the hydrophilic surface regions to form the plurality of microdroplets on the hydrophilic surface regions.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: January 9, 2024
    Assignee: MGI Tech Co., Ltd.
    Inventors: Jian Gong, Liang Wang, Yan-You Lin, Cheng Frank Zhong
  • Publication number: 20230249186
    Abstract: A microfluidic device includes first and second substrate structures. The first substrate structure has a first substrate surface configured to receive one or more droplets. A plurality of electrodes configured to apply an electric field to the droplets. The second substrate structure has a second substrate surface facing the first substrate surface and spaced apart from the first substrate surface to form a fluid channel. The microfluidic device has a first heating element adjacent to the first substrate structure and disposed on an opposite side of the first substrate surface, and a second heating element adjacent to the second substrate structure and disposed on an opposite side of the second substrate surface. The microfluidic device further includes one or more temperature sensors disposed adjacent to the fluid channel between the first substrate structure and the second substrate structure.
    Type: Application
    Filed: April 18, 2023
    Publication date: August 10, 2023
    Inventors: Yan-You Lin, Jian Gong, Frank Zhong
  • Patent number: 11702695
    Abstract: Embodiments provided herewith are directed to self-assembled methods of preparing a patterned surface for sequencing applications including, for example, a patterned flow cell or a patterned surface for digital fluidic devices. The methods utilize photolithography to create a patterned surface with a plurality of microscale or nanoscale contours, separated by hydrophobic interstitial regions, without the need of oxygen plasma treatment during the photolithography process. In addition, the methods avoid the use of any chemical or mechanical polishing steps after the deposition of a gel material to the contours.
    Type: Grant
    Filed: May 5, 2022
    Date of Patent: July 18, 2023
    Assignee: Illumina, Inc.
    Inventors: Yir-Shyuan Wu, Yan-You Lin, M. Shane Bowen, Cyril Delattre, Fabien Abeille, Tarun Khurana, Arnaud Rival, Poorya Sabounchi, Dajun Yuan, Maria Candelaria Rogert Bacigalupo
  • Publication number: 20230220462
    Abstract: Implementations of a method for seeding sequence libraries on a surface of a sequencing flow cell that allow for spatial segregation of the libraries on the surface are provided. The spatial segregation can be used to index sequence reads from individual sequencing libraries to increase efficiency of subsequent data analysis. In some examples, hydrogel beads containing encapsulated sequencing libraries are captured on a sequencing flow cell and degraded in the presence of a liquid diffusion barrier to allow for the spatial segregation and seeding of the sequencing libraries on the surface of the flow cell. Additionally, examples of systems, methods and compositions are provided relating to flow cell devices configured for nucleic acid library preparation and single cell sequencing. Some examples include flow cell devices having a hydrogel with genetic material disposed therein, and which is retained within the hydrogel during nucleic acid processing.
    Type: Application
    Filed: March 8, 2023
    Publication date: July 13, 2023
    Inventors: Tarun Kumar Khurana, Yir-Shyuan Wu, Xi-Jun Chen, Filiz Gorpe-Yasar, Yan-You Lin, Victoria Popic, Erich B. Jaeger, Mostafa Ronaghi
  • Patent number: 11660602
    Abstract: A microfluidic device includes first and second substrate structures. The first substrate structure has a first substrate surface configured to receive one or more droplets. A plurality of electrodes configured to apply an electric field to the droplets. The second substrate structure has a second substrate surface facing the first substrate surface and spaced apart from the first substrate surface to form a fluid channel. The microfluidic device has a first heating element adjacent to the first substrate structure and disposed on an opposite side of the first substrate surface, and a second heating element adjacent to the second substrate structure and disposed on an opposite side of the second substrate surface. The microfluidic device further includes one or more temperature sensors disposed adjacent to the fluid channel between the first substrate structure and the second substrate structure.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: May 30, 2023
    Assignee: MGI Holdings Co., Limited
    Inventors: Yan-You Lin, Jian Gong, Frank Zhong
  • Patent number: 11649498
    Abstract: Implementations of a method for seeding sequence libraries on a surface of a sequencing flow cell that allow for spatial segregation of the libraries on the surface are provided. The spatial segregation can be used to index sequence reads from individual sequencing libraries to increase efficiency of subsequent data analysis. In some examples, hydrogel beads containing encapsulated sequencing libraries are captured on a sequencing flow cell and degraded in the presence of a liquid diffusion barrier to allow for the spatial segregation and seeding of the sequencing libraries on the surface of the flow cell. Additionally, examples of systems, methods and compositions are provided relating to flow cell devices configured for nucleic acid library preparation and single cell sequencing. Some examples include flow cell devices having a hydrogel with genetic material disposed therein, and which is retained within the hydrogel during nucleic acid processing.
    Type: Grant
    Filed: April 13, 2022
    Date of Patent: May 16, 2023
    Assignee: ILLUMINA, INC.
    Inventors: Tarun Kumar Khurana, Yir-Shyuan Wu, Xi-Jun Chen, Filiz Gorpe-Yasar, Yan-You Lin, Victoria Popic, Erich B. Jaeger, Mostafa Ronaghi
  • Publication number: 20220301848
    Abstract: A method for forming sequencing flow cells can include providing a semiconductor wafer covered with a dielectric layer and forming a patterned layer on the dielectric layer. The patterned layer has a differential surface that includes alternating first surface regions and second surface regions. The method can also include attaching a cover wafer to the semiconductor wafer to form a composite wafer structure including a plurality of flow cells. The composite wafer structure can then be singulated to form a plurality of dies. Each die forms a sequencing flow cell. The sequencing flow cell can include a flow channel between a portion of the patterned layer and a portion of the cover wafer, an inlet, and an outlet. Further, the method can include functionalizing the sequencing flow cell to create differential surfaces.
    Type: Application
    Filed: June 9, 2022
    Publication date: September 22, 2022
    Inventors: Shifeng Li, Jian Gong, Yan-You Lin, Cheng Frank Zhong
  • Publication number: 20220275443
    Abstract: Embodiments provided herewith are directed to self-assembled methods of preparing a patterned surface for sequencing applications including, for example, a patterned flow cell or a patterned surface for digital fluidic devices. The methods utilize photolithography to create a patterned surface with a plurality of microscale or nanoscale contours, separated by hydrophobic interstitial regions, without the need of oxygen plasma treatment during the photolithography process. In addition, the methods avoid the use of any chemical or mechanical polishing steps after the deposition of a gel material to the contours.
    Type: Application
    Filed: May 5, 2022
    Publication date: September 1, 2022
    Inventors: Yir-Shyuan Wu, Yan-You Lin, M. Shane Bowen, Cyril Delattre, Fabien Abeille, Tarun Khurana, Arnaud Rival, Poorya Sabounchi, Dajun Yuan, Maria Candelaria Rogert Bacigalupo
  • Publication number: 20220250062
    Abstract: A method and device for displacing fluid from a reagent cartridge (310) into a microfluidic device (320) and for loading the fluid into the reagent cartridge (310). The reagent cartridge (310) may include a cartridge body and a pipette array with pipette tips (315) to engage inlets of a microfluidics or other cartridge, wherein the pipette tips (315) correspond in position to the plurality of inlets (325) of the microfluidic device (320). Fluid may be loaded into or displaced from the microfluidic device (320) by a system of plungers (615). The reagent cartridge may alternatively include blisters (925) having fluid reservoirs and dispensing tips (930), each dispensing tip (930) including a pathway (927) that is fluidly coupled to a blister (925). The fluid may be displaced from or loaded into the blister (925) via the dispensing tip (930). A deformable seal (910) may be overlaid on the blisters (925) to seal the volumes of fluid within the blisters (925), and may be deformed to displace the fluid.
    Type: Application
    Filed: July 28, 2020
    Publication date: August 11, 2022
    Inventors: Sz-Chin Lin, Jian Gong, Yiwen Ouyang, Yan-You Lin
  • Publication number: 20220243269
    Abstract: Implementations of a method for seeding sequence libraries on a surface of a sequencing flow cell that allow for spatial segregation of the libraries on the surface are provided. The spatial segregation can be used to index sequence reads from individual sequencing libraries to increase efficiency of subsequent data analysis. In some examples, hydrogel beads containing encapsulated sequencing libraries are captured on a sequencing flow cell and degraded in the presence of a liquid diffusion barrier to allow for the spatial segregation and seeding of the sequencing libraries on the surface of the flow cell. Additionally, examples of systems, methods and compositions are provided relating to flow cell devices configured for nucleic acid library preparation and single cell sequencing. Some examples include flow cell devices having a hydrogel with genetic material disposed therein, and which is retained within the hydrogel during nucleic acid processing.
    Type: Application
    Filed: April 13, 2022
    Publication date: August 4, 2022
    Inventors: Tarun Kumar Khurana, Yir-Shyuan Wu, Xi-Jun Chen, Filiz Gorpe-Yasar, Yan-You Lin, Victoria Popic, Erich B. Jaeger, Mostafa Ronaghi
  • Patent number: 11387096
    Abstract: A method for forming sequencing flow cells can include providing a semiconductor wafer covered with a dielectric layer, and forming a patterned layer on the dielectric layer. The patterned layer has a differential surface that includes alternating first surface regions and second surface regions. The method can also include attaching a cover wafer to the semiconductor wafer to form a composite wafer structure including a plurality of flow cells. The composite wafer structure can then be singulated to form a plurality of dies. Each die forms a sequencing flow cell. The sequencing flow cell can include a flow channel between a portion of the patterned layer and a portion of the cover wafer, an inlet, and an outlet. Further, the method can include functionalizing the sequencing flow cell to create differential surfaces.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: July 12, 2022
    Assignee: MGI Tech Co., Ltd.
    Inventors: Shifeng Li, Jian Gong, Yan-You Lin, Cheng Frank Zhong
  • Publication number: 20220184622
    Abstract: In accordance with embodiments herein a method for capturing cells of interest in a digital microfluidic system is provided, comprising utilizing a droplet actuator to transport a sample droplet to a microwell device. The microwell device includes a substrate having a plurality of microwells that open onto a droplet operations surface of the microwell device. The sample droplet includes cells of interest that enter the microwells. The method introduces capture beads to the microwells, and the capture elements are immobilized on the capture beads. The method utilizes the droplet actuator to transport a cell lysis reagent droplet to the microwell device. Portions of the cell lysis reagent droplet enter the microwells and, during an incubation period, cause the cells of interest to release analyte that is captured by the capture elements on the capture beads.
    Type: Application
    Filed: December 17, 2021
    Publication date: June 16, 2022
    Inventors: Arash Jamshidi, Yan-you Lin, Farnaz Absalan, Sarah Stuart, Gordon Cann, Yir-Shyuan Wu, Tarun Khurana, Jeffrey S. Fisher
  • Patent number: 11352668
    Abstract: Implementations of a method for seeding sequence libraries on a surface of a sequencing flow cell that allow for spatial segregation of the libraries on the surface are provided. The spatial segregation can be used to index sequence reads from individual sequencing libraries to increase efficiency of subsequent data analysis. In some examples, hydrogel beads containing encapsulated sequencing libraries are captured on a sequencing flow cell and degraded in the presence of a liquid diffusion barrier to allow for the spatial segregation and seeding of the sequencing libraries on the surface of the flow cell. Additionally, examples of systems, methods and compositions are provided relating to flow cell devices configured for nucleic acid library preparation and single cell sequencing. Some examples include flow cell devices having a hydrogel with genetic material disposed therein, and which is retained within the hydrogel during nucleic acid processing.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: June 7, 2022
    Assignee: ILLUMINA, INC.
    Inventors: Tarun Kumar Khurana, Yir-Shyuan Wu, Xi-Jun Chen, Filiz Gorpe-Yasar, Yan-You Lin, Victoria Popic, Erich B. Jaeger, Mostafa Ronaghi
  • Patent number: 11332788
    Abstract: Embodiments provided herewith are directed to self-assembled methods of preparing a patterned surface for sequencing applications including, for example, a patterned flow cell or a patterned surface for digital fluidic devices. The methods utilize photolithography to create a patterned surface with a plurality of microscale or nanoscale contours, separated by hydrophobic interstitial regions, without the need of oxygen plasma treatment during the photolithography process. In addition, the methods avoid the use of any chemical or mechanical polishing steps after the deposition of a gel material to the contours.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: May 17, 2022
    Assignee: Illumina, Inc.
    Inventors: Yir-Shyuan Wu, Yan-You Lin, M. Shane Bowen, Cyril Delattre, Fabien Abeille, Tarun Khurana, Arnaud Rival, Poorya Sabounchi, Dajun Yuan, Maria Candelaria Rogert Bacigalupo
  • Publication number: 20220040662
    Abstract: An apparatus (100) including multiple biological chips (110,120) includes a substrate (101), a first adhesive layer (134) disposed on the substrate (101), a first biological chip (110) and a second biological chip (120) disposed on the first adhesive layer (134) and attached to the substrate (101) by the adhesive layer (134). The apparatus (100) further includes a filler (130) disposed between the first biological chip (110) and the second biological chip (120). The filler (130) includes a second adhesive layer (135) extending between a side surface (114) of the first biological chip (110) and a side surface (124) of the second biological chip (120), the second adhesive layer (135) attaching the first biological chip (110) to the second biological chip (120). The filler (130) also includes a surface layer (132) disposed over the second adhesive layer (135).
    Type: Application
    Filed: November 27, 2019
    Publication date: February 10, 2022
    Inventors: Liang Wang, Jian Gong, Yan-You Lin, Shifeng Li
  • Patent number: 11203016
    Abstract: In accordance with embodiments herein a method for capturing cells of interest in a digital microfluidic system is provided, comprising utilizing a droplet actuator to transport a sample droplet to a microwell device. The microwell device includes a substrate having a plurality of microwells that open onto a droplet operations surface of the microwell device. The sample droplet includes cells of interest that enter the microwells. The method introduces capture beads to the microwells, and the capture elements are immobilized on the capture beads. The method utilizes the droplet actuator to transport a cell lysis reagent droplet to the microwell device. Portions of the cell lysis reagent droplet enter the microwells and, during an incubation period, cause the cells of interest to release analyte that is captured by the capture elements on the capture beads.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: December 21, 2021
    Assignee: Illumina, Inc.
    Inventors: Arash Jamshidi, Yan-you Lin, Farnaz Absalan, Sarah Stuart, Gordon Cann, Yir-Shyuan Wu, Tarun Khurana, Jeffrey S Fisher
  • Publication number: 20210379594
    Abstract: An apparatus for forming a plurality of microdroplets from a droplet includes a substrate, a dielectric layer on the substrate and having a plurality of hydrophilic surface regions spaced apart from each other by a hydrophobic surface, and a plurality of electrodes covered by the dielectric layer. The electrodes are configured to form an electric field across the droplet in response to voltages provided by a control circuit to move the droplet across the dielectric layer in a lateral direction while leaving portions of the droplet on the hydrophilic surface regions to form the plurality of microdroplets on the hydrophilic surface regions.
    Type: Application
    Filed: November 8, 2019
    Publication date: December 9, 2021
    Inventors: Jian Gong, Liang Wang, Yan-You Lin, Cheng Frank Zhong
  • Patent number: 11174513
    Abstract: A stack of fluidics layers of a microfluidic cartridge for sequencing nucleic acid molecules includes a sequencing chamber layer having a sequencing chamber area configured for carrying out clustering and sequencing reactions, and a sequencing chamber bottom layer disposed under the sequencing chamber layer. The sequencing chamber bottom layer has an opening configured to hold an image sensor with the image sensor having an active area disposed under the sequencing chamber area. The sequencing chamber area spans substantially all of the active area of the image sensor. The stack of fluidics layers includes a flexible printed circuit board (PCB) layer under the sequencing chamber bottom layer, and a fluidics channels layer disposed under the flexible PCB layer. The fluidics channels layer includes fluidics channels that are configured to deliver reactants to the sequencing chamber area. The fluidics channels do not substantially overlap with the active area of the image sensor.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: November 16, 2021
    Assignee: Illumina, Inc.
    Inventors: Poorya Sabounchi, Behnam Javanmardi, Tarun Khurana, Philip Paik, Yan-You Lin