Patents by Inventor Yang Wei

Yang Wei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11482673
    Abstract: The present disclosure relates to a solar battery. The solar battery comprises a semiconductor structure, a back electrode, and an upper electrode. The semiconductor structure defines a first surface and a second surface. The semiconductor structure comprises an N-type semiconductor layer and a P-type semiconductor layer. The back electrode is located on the first surface. The upper electrode is located on the second surface. The back electrode comprises a first carbon nanotube, the upper electrode comprises a second carbon nanotube, and the first carbon nanotube intersects with the second carbon nanotube. A multilayer structure is formed by an overlapping region of the first carbon nanotube, the semiconductor structure and the second carbon nanotube.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: October 25, 2022
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jin Zhang, Yang Wei, Shou-Shan Fan
  • Patent number: 11476058
    Abstract: A supercapacitor is provided. The supercapacitor includes an elastic fiber, an internal electrode, a first electrolyte layer, and an external electrode. The internal electrode, the first electrolyte layer, and the external electrode are sequentially wrapped on an outer surface of the elastic fiber. The internal electrode includes a first carbon nanotube film and a NiO@MnOx composite structure, and the external electrode includes a second carbon nanotube film and a Fe2O3 layer.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: October 18, 2022
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Hua Yuan, Guang Wang, Yang Wu, Yang Wei, Yue-Gang Zhang, Shou-Shan Fan
  • Publication number: 20220320123
    Abstract: In some embodiments, the present disclosure relates to a method of forming an integrated chip. The method includes forming a bottom electrode layer over a substrate and forming a seed layer over the bottom electrode layer. A ferroelectric switching layer is formed over the bottom electrode layer and to contact the seed layer. The ferroelectric switching layer is formed to have a first region with a first crystal phase and a second region with a different crystal phase. A top electrode layer is formed over the ferroelectric switching layer. One or more patterning processes are performed on the bottom electrode layer, the seed layer, the ferroelectric switching layer, and the top electrode layer to form a ferroelectric random access memory (FeRAM) device.
    Type: Application
    Filed: June 17, 2022
    Publication date: October 6, 2022
    Inventors: Bi-Shen Lee, Hsing-Lien Lin, Hsun-Chung Kuang, Yi Yang Wei
  • Patent number: 11460345
    Abstract: A cavity blackbody radiation source is provided. The cavity blackbody radiation source comprises a blackbody radiation cavity and a carbon nanotube composite material. The blackbody radiation cavity comprises an inner surface. The carbon nanotube composite material is located on the inner surface. The carbon nanotube composite material comprises a black lacquer and a plurality of carbon nanotubes, and the plurality of carbon nanotubes is dispersed in the black lacquer.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: October 4, 2022
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yang Wei, Guang Wang, Shou-Shan Fan
  • Publication number: 20220310635
    Abstract: In some embodiments, the present disclosure relates to an integrated chip that includes one or more interconnect dielectric layers arranged over a substrate. A bottom electrode is disposed over a conductive structure and extends through the one or more interconnect dielectric layers. A top electrode is disposed over the bottom electrode. A ferroelectric layer is disposed between and contacts the bottom electrode and the top electrode. The ferroelectric layer includes a first lower horizontal portion, a first upper horizontal portion arranged above the first lower horizontal portion, and a first sidewall portion and coupling the first lower horizontal portion to the first upper horizontal portion.
    Type: Application
    Filed: June 14, 2021
    Publication date: September 29, 2022
    Inventors: Hai-Dang Trinh, Yi Yang Wei, Bi-Shen Lee, Fa-Shen Jiang, Hsun-Chung Kuang, Cheng-Yuan Tsai
  • Patent number: 11454547
    Abstract: A cavity blackbody radiation source is provide. The cavity blackbody radiation source comprises a blackbody radiation cavity and a carbon nanotube composite material. The blackbody radiation cavity comprises an inner surface. The carbon nanotube composite material is located on the inner surface. The carbon nanotube composite material comprises a black lacquer and a plurality of carbon nanotubes, and the plurality of carbon nanotubes is in an upright state in the black lacquer.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: September 27, 2022
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yang Wei, Guang Wang, Shou-Shan Fan
  • Publication number: 20220285374
    Abstract: In some embodiments, the present disclosure relates to a memory device including a semiconductor substrate, a first electrode disposed over the semiconductor substrate, a ferroelectric layer disposed between the first electrode and the semiconductor substrate, and a first stressor layer separating the first electrode from the ferroelectric layer. The first stressor layer has a coefficient of thermal expansion greater than that of the ferroelectric layer.
    Type: Application
    Filed: May 3, 2021
    Publication date: September 8, 2022
    Inventors: Bi-Shen Lee, Tzu-Yu Lin, Yi Yang Wei, Hai-Dang Trinh, Hsun-Chung Kuang, Cheng-Yuan Tsai
  • Publication number: 20220278115
    Abstract: Ferroelectric stacks are disclosed herein that can improve retention performance of ferroelectric memory devices. An exemplary ferroelectric stack has a ferroelectric switching layer (FSL) stack disposed between a first electrode and a second electrode. The ferroelectric stack includes a barrier layer disposed between a first FSL and a second FSL, where a first crystalline condition of the barrier layer is different than a second crystalline condition of the first FSL and/or the second FSL. In some embodiments, the first crystalline condition is an amorphous phase, and the second crystalline condition is an orthorhombic phase. In some embodiments, the first FSL and/or the second FSL include a first metal oxide, and the barrier layer includes a second metal oxide. The ferroelectric stack can be a ferroelectric capacitor, a portion of a transistor, and/or connected to a transistor in a ferroelectric memory device to provide data storage in a non-volatile manner.
    Type: Application
    Filed: July 26, 2021
    Publication date: September 1, 2022
    Inventors: Yi Yang Wei, Tzu-Yu Lin, Bi-Shen Lee, Hai-Dang Trinh, Hsing-Lien Lin, Hsun-Chung Kuang
  • Publication number: 20220267402
    Abstract: Modified glucagon-like peptide (GLP1) fusion proteins with modified GLP1 polypeptides and related methods of use are described. Aspects of the disclosure further relate to fusion proteins that are GLP1 receptor agonists with a modified GLP1 fused to a stabilizing domain such as an extra cellular domain or antibody. Fusion proteins with modified GLP1 that are useful for treating or ameliorating a symptom or indication of a blood sugar disorder such as obesity and diabetes are also provided.
    Type: Application
    Filed: February 24, 2021
    Publication date: August 25, 2022
    Inventor: Yang Wei
  • Patent number: 11393833
    Abstract: In some embodiments, the present disclosure relates to an integrated chip. The integrated chip includes a bottom electrode disposed over a substrate and a top electrode disposed over the bottom electrode. A ferroelectric switching layer is arranged between the bottom electrode and the top electrode. The ferroelectric switching layer is configured to change polarization based upon one or more voltages applied to the bottom electrode or the top electrode. A seed layer is arranged between the bottom electrode and the top electrode. The seed layer and the ferroelectric switching layer have a non-monoclinic crystal phase.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: July 19, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bi-Shen Lee, Hsing-Lien Lin, Hsun-Chung Kuang, Yi Yang Wei
  • Patent number: 11386676
    Abstract: A passenger state analysis method and apparatus, a vehicle, an electronic device and a storage medium. The method includes: obtaining a video stream of a rear seat area in a vehicle; performing face and/or body detection on at least one image frame in the video stream; determining state information of a passenger in the rear seat area according to a face and/or body detection result; and in response to the fact that the state information of the passenger satisfies a predetermined condition, outputting prompt information to a driver area or a specified device in the vehicle.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: July 12, 2022
    Assignee: SHANGHAI SENSETIME INTELLIGENT TECHNOLOGY CO., LTD
    Inventors: Chengming Yi, Guanhua Liang, Yang Wei, Renbo Qin, Chendi Yu
  • Patent number: 11289615
    Abstract: The present disclosure relates to a semiconductor structure. The semiconductor structure comprises a semiconductor layer, a first carbon nanotube, and a second carbon nanotube. The semiconductor layer comprises an N-type semiconductor layer and a P-type semiconductor layer stacked with each other. The first carbon nanotube is on a first surface of the semiconductor layer. The second carbon nanotube is on a second surface of the semiconductor layer. A first extending direction of the first carbon nanotube intersects with a second extending direction of the second carbon nanotube. At an intersection of the first carbon nanotube and the second carbon nanotube, and in a direction perpendicular to the semiconductor layer, a multilayer structure is formed by an overlapping region of the first carbon nanotube, the semiconductor layer, and the second carbon nanotube.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: March 29, 2022
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jin Zhang, Yang Wei, Shou-Shan Fan
  • Patent number: 11253878
    Abstract: The disclosure relates to a method for making charged nanoparticles, the method includes: providing a solution with a first solute; atomizing the solution into micro-scaled droplets; providing a charged electrode with at least one through-hole, a negative or positive electric potential is applied to the electrode; allowing the micro-scaled droplets to pass through the at least one through-hole.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: February 22, 2022
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Xiang Jin, Jiang-Tao Wang, Peng Liu, Yang Wei, Kai-Li Jiang, Shou-Shan Fan
  • Publication number: 20220028874
    Abstract: A method includes forming a bottom electrode layer, and depositing a first ferroelectric layer over the bottom electrode layer. The first ferroelectric layer is amorphous. A second ferroelectric layer is deposited over the first ferroelectric layer, and the second ferroelectric layer has a polycrystalline structure. The method further includes depositing a third ferroelectric layer over the second ferroelectric layer, with the third ferroelectric layer being amorphous, depositing a top electrode layer over the third ferroelectric layer, and patterning the top electrode layer, the third ferroelectric layer, the second ferroelectric layer, the first ferroelectric layer, and the bottom electrode layer to form a Ferroelectric Random Access Memory cell.
    Type: Application
    Filed: December 17, 2020
    Publication date: January 27, 2022
    Inventors: Bi-Shen Lee, Yi Yang Wei, Hsing-Lien Lin, Hsun-Chung Kuang, Cheng-Yuan Tsai, Hai-Dang Trinh
  • Publication number: 20220023096
    Abstract: A vitrectomy probe includes a hollow needle having a sidewall and a tip, a port formed in the sidewall of the hollow needle and spaced apart from the tip, and a cutter positioned within the hollow needle. The cutter is slidable relative to the port to cut tissue within the port. The vitrectomy probe also includes a manipulation feature defined by at least one recess formed in the tip of the hollow needle, the sidewall of the hollow needle, or both. The manipulation feature is configured to facilitate manipulation of tissue using the hollow needle.
    Type: Application
    Filed: November 25, 2019
    Publication date: January 27, 2022
    Inventors: Erik W. Peterson, Kai Chen, Yang Wei
  • Patent number: 11226238
    Abstract: The present invention relates to a blackbody radiation source. The blackbody radiation source comprises a blackbody radiation cavity and a carbon nanotube structure. The blackbody radiation cavity comprises an inner surface. The carbon nanotube structure is located on the inner surface. The carbon nanotube structure comprises a first carbon nanotube layer in contact with the inner surface, a second carbon nanotube layer located on a surface of the first carbon nanotube layer and a third carbon nanotube layer located between the first carbon nanotube layer and the second carbon nanotube layer. The first carbon nanotube layer and the second carbon nanotube layer are fixed together by the third carbon nanotube layer.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: January 18, 2022
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yang Wei, Guang Wang, Shou-Shan Fan
  • Patent number: 11217727
    Abstract: The present disclosure relates to a light emitting diode. The light emitting diode comprises a first semiconductor layer, a second semiconductor layer, an active layer, a first electrode, and a second electrode. The active layer is located between the first semiconductor layer and the second semiconductor layer. The first electrode is a first carbon nanotube, the second electrode is a second carbon nanotube. A first extending direction of the first carbon nanotube and a second extending direction of the second carbon nanotube are crossed with each other. A vertical p-n junction or a vertical p-i-n junction is formed by the first semiconductor layer and the second semiconductor layer in a direction perpendicular to the first semiconductor layer.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: January 4, 2022
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jin Zhang, Yang Wei, Shou-Shan Fan
  • Patent number: 11214860
    Abstract: A method for making a carbon fiber film includes suspending a carbon nanotube film in a chamber. A negative voltage is applied to the carbon nanotube film. A carbon source gas is supplied into the chamber, wherein the carbon source gas is cracked to form carbon free radicals, and the carbon free radicals are graphitized to form a graphite layer on the carbon nanotube film.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: January 4, 2022
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jiang-Tao Wang, Wei Zhao, Peng Liu, Yang Wei, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 11204283
    Abstract: A cavity blackbody radiation source is provide. A cavity blackbody radiation source comprises a blackbody radiation cavity and a carbon nanotube layer. The blackbody radiation cavity comprises an inner surface. The carbon nanotube layer is located on the inner surface. The carbon nanotube carbon nanotube layer comprises a plurality of carbon nanotubes and a plurality of microporous. A method of making the cavity blackbody radiation source is also provide.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: December 21, 2021
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yang Wei, Guang Wang, Shou-Shan Fan
  • Patent number: D966866
    Type: Grant
    Filed: June 29, 2019
    Date of Patent: October 18, 2022
    Assignee: dormakaba USA Inc.
    Inventors: Jamison D. Woodley, Yang Wei