Patents by Inventor Yanzhen Wang

Yanzhen Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11384761
    Abstract: A variable capacity compressor is provided, including: two cylinders and a middle plate; at least one flow channel provided in the middle plate, wherein one end of the flow channel is connected to an exhaust chamber of any one of the two cylinders, the other end is connected to a suction chamber of the other one of the two cylinders. In present disclosure, by setting a flow channel in the middle plate of the variable capacity compressor, the exhaust chamber of one cylinder is connected to the suction chamber of the other cylinder. When the flow channel is completely closed, the two cylinders operate independently; when the flow channel is opened, the refrigerant in the exhaust chamber flows into the suction chamber through the flow channel, that is, the upper cylinders and the lower cylinder are connected to each other, which can adjust the capacity of the compressor.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: July 12, 2022
    Assignee: SHANGHAI HIGHLY ELECTRICAL APPLIANCES CO., LTD.
    Inventors: Yanzhen Wang, Jin Pan, Chunhui Liu
  • Patent number: 11353025
    Abstract: A dual-cylinder two-stage variable capacity compressor is provided, including: a first cylinder, having an exhaust port connected to a first exhaust channel: a second cylinder, wherein the second cylinder is provided with a ventilating slider, and the ventilating slider is provided with a first gas transit channel and a second gas transit channel; wherein, when the ventilating slider is at a first connecting position, the first exhaust channel is connected to a suction channel in a second cylinder when the ventilating slider is at a second connecting position, the first exhaust channel is connected to a second exhaust channel. The compressor of the present disclosure can vary its own capacity, that is, the variation of the compressor's capacity can be realized by arranging a ventilating slider, which will meet the requirements of variation loads of the compressor in different seasons.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: June 7, 2022
    Assignee: SHANGHAI HIGHLY ELECTRICAL APPLIANCES CO., LTD.
    Inventors: Yanzhen Wang, Jin Pan, Chunhui Liu
  • Publication number: 20220034320
    Abstract: A dual-cylinder two-stage variable capacity compressor is provided, including: a first cylinder, having an exhaust port connected to a first exhaust channel: a second cylinder, wherein the second cylinder is provided with a ventilating slider, and the ventilating slider is provided with a first gas transit channel and a second gas transit channel; wherein, when the ventilating slider is at a first connecting position, the first exhaust channel is connected to a suction channel in a second cylinder when the ventilating slider is at a second connecting position, the first exhaust channel is connected to a second exhaust channel. The compressor of the present disclosure can vary its own capacity, that is, the variation of the compressor's capacity can be realized by arranging a ventilating slider, which will meet the requirements of variation loads of the compressor in different seasons.
    Type: Application
    Filed: December 27, 2019
    Publication date: February 3, 2022
    Applicant: SHANGHAI HIGHLY ELECTRICAL APPLIANCES CO., LTD.
    Inventors: Yanzhen WANG, Jin PAN, Chunhui LIU
  • Publication number: 20220025887
    Abstract: A variable capacity compressor is provided, including: two cylinders and a middle plate; at least one flow channel provided in the middle plate, wherein one end of the flow channel is connected to an exhaust chamber of any one of the two cylinders, the other end is connected to a suction chamber of the other one of the two cylinders. In present disclosure, by setting a flow channel in the middle plate of the variable capacity compressor, the exhaust chamber of one cylinder is connected to the suction chamber of the other cylinder. When the flow channel is completely closed, the two cylinders operate independently; when the flow channel is opened, the refrigerant in the exhaust chamber flows into the suction chamber through the flow channel, that is, the upper cylinders and the lower cylinder are connected to each other, which can adjust the capacity of the compressor.
    Type: Application
    Filed: December 27, 2019
    Publication date: January 27, 2022
    Applicant: SHANGHAI HIGHLY ELECTRICAL APPLIANCES CO., LTD.
    Inventors: Yanzhen WANG, Jin PAN, Chunhui LIU
  • Patent number: 11225411
    Abstract: A method for producing insoluble sulfur, including: heating a sulfur to 200-700° C., quenching it with water, aqueous solution and other solvents, drying and solidifying the resulting substance at 40-80° C. for 3-15 h, to obtain an insoluble sulfur crude product; crushing the crude product in water into particles with a particle size of 50-400 meshes, wherein the water temperature is not higher than 80° C.; pumping the slurry of water and crude product into the upper part of an extraction column, pumping solvent into the lower part thereof; making the water and solvent from the top of the column flow into a separation tank to separate water phase and solvent phase, heating and evaporating the solvent phase to recover solvent and obtain soluble sulfur; heating and evaporating the insoluble sulfur and solvent from the bottom of the column to recover solvent and obtain purified insoluble sulfur.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: January 18, 2022
    Assignee: China University of Petroleum (East China)
    Inventors: Yanzhen Wang, Chunmin Song, Hongling Duan, An Zhang, Li Gao
  • Publication number: 20210198108
    Abstract: A method for producing insoluble sulfur, including: heating a sulfur to 200-700° C., quenching it with water, aqueous solution and other solvents, drying and solidifying the resulting substance at 40-80° C. for 3-15 h, to obtain an insoluble sulfur crude product; crushing the crude product in water into particles with a particle size of 50-400 meshes, wherein the water temperature is not higher than 80° C.; pumping the slurry of water and crude product into the upper part of an extraction column, pumping solvent into the lower part thereof; making the water and solvent from the top of the column flow into a separation tank to separate water phase and solvent phase, heating and evaporating the solvent phase to recover solvent and obtain soluble sulfur; heating and evaporating the insoluble sulfur and solvent from the bottom of the column to recover solvent and obtain purified insoluble sulfur.
    Type: Application
    Filed: August 11, 2020
    Publication date: July 1, 2021
    Inventors: Yanzhen WANG, Chunmin SONG, Hongling DUAN, An ZHANG, Li GAO
  • Patent number: 10580857
    Abstract: A shallow trench isolation (STI) structure is formed from a conventional STI trench structure of a first dielectric material extending into the substrate. The conventional STI structure undergoes further processing: removing a first portion of the dielectric material and adjacent portions of the semiconductor substrate to create a first recess, and then removing another portion of the dielectric material to create a second recess in just the dielectric material. A nitride spacer layer is formed above the remaining dielectric material and on the sidewalls of the substrate. A second dielectric material is formed on the spacer layer and fills the remainder of first and second recesses to a lever above the substrate. A nitride capping layer and another dielectric layer are disposed above the second material, thereby substantially encasing the STI structure in nitride. This provides a taller STI structure that results in a better fin profile during a subsequent fin reveal process.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: March 3, 2020
    Assignee: GLOBALFOUNDRIES, INC.
    Inventors: Yanzhen Wang, Xinyuan Dou, Hongliang Shen, Sipeng Gu
  • Publication number: 20190386100
    Abstract: A shallow trench isolation (STI) structure is formed from a conventional STI trench structure of a first dielectric material extending into the substrate. The conventional STI structure undergoes further processing: removing a first portion of the dielectric material and adjacent portions of the semiconductor substrate to create a first recess, and then removing another portion of the dielectric material to create a second recess in just the dielectric material. A nitride spacer layer is formed above the remaining dielectric material and on the sidewalls of the substrate. A second dielectric material is formed on the spacer layer and fills the remainder of first and second recesses to a lever above the substrate. A nitride capping layer and another dielectric layer are disposed above the second material, thereby substantially encasing the STI structure in nitride. This provides a taller STI structure that results in a better fin profile during a subsequent fin reveal process.
    Type: Application
    Filed: June 18, 2018
    Publication date: December 19, 2019
    Inventors: Yanzhen Wang, Xinyuan Dou, Hongliang Shen, Sipeng Gu
  • Patent number: 10177151
    Abstract: A method and structure for a semiconductor device that includes one or more fin-type field effect transistors (FINFETs) and single-diffusion break (SDB) type isolation regions, which are within a semiconductor fin and define the active device region(s) for the FINFET(s). Asymmetric trenches are formed in a substrate through asymmetric cuts in sacrificial fins formed on the substrate. The asymmetric cuts have relatively larger gaps between fin portions that are closest to the substrate, and deeper portions of the asymmetric trenches are relatively wider than shallower portions. Channel regions are formed in the substrate below two adjacent fins. Source/drain regions of complementary transistors are formed in the substrate on opposite sides of the channel regions. The asymmetric trenches are filled with an insulator to form a single-diffusion break between two source/drain regions of different ones of the complementary transistors. Also disclosed is a semiconductor structure formed according to the method.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: January 8, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Yanzhen Wang, Hui Zang, Bingwu Liu
  • Publication number: 20180374851
    Abstract: A method and structure for a semiconductor device that includes one or more fin-type field effect transistors (FINFETs) and single-diffusion break (SDB) type isolation regions, which are within a semiconductor fin and define the active device region(s) for the FINFET(s). Asymmetric trenches are formed in a substrate through asymmetric cuts in sacrificial fins formed on the substrate. The asymmetric cuts have relatively larger gaps between fin portions that are closest to the substrate, and deeper portions of the asymmetric trenches are relatively wider than shallower portions. Channel regions are formed in the substrate below two adjacent fins. Source/drain regions of complementary transistors are formed in the substrate on opposite sides of the channel regions. The asymmetric trenches are filled with an insulator to form a single-diffusion break between two source/drain regions of different ones of the complementary transistors. Also disclosed is a semiconductor structure formed according to the method.
    Type: Application
    Filed: June 26, 2017
    Publication date: December 27, 2018
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: YANZHEN WANG, HUI ZANG, BINGWU LIU
  • Publication number: 20180358267
    Abstract: At least one method, apparatus and system is disclosed herein for forming a fin field effect transistor (finFET) device having a reduced breakdown voltage. The method comprises forming a first gate structure on a substrate of a semiconductor wafer in a first layer, the gate structure extending to a height of about h above the substrate. A trench is formed in the first layer adjacent the first gate structure and extends from a height of about d to the substrate. A connector is formed in the trench between the substrate and a layer of the finFET above the first layer. The process of forming the connector comprises; forming a thin film oxide on the sidewalls of the trench extending from a height below h to about d; forming a liner in the trench, extending over the substrate and on the sidewalls to about the height d over the thin film oxide and forming a layer of tungsten in the trench over the liner.
    Type: Application
    Filed: June 7, 2017
    Publication date: December 13, 2018
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Yanzhen Wang, Xinyuan Dou, Sipeng Gu
  • Patent number: 10153211
    Abstract: At least one method, apparatus and system is disclosed herein for forming a fin field effect transistor (finFET) device having a reduced breakdown voltage. The method comprises forming a first gate structure on a substrate of a semiconductor wafer in a first layer, the gate structure extending to a height of about h above the substrate. A trench is formed in the first layer adjacent the first gate structure and extends from a height of about d to the substrate. A connector is formed in the trench between the substrate and a layer of the finFET above the first layer. The process of forming the connector comprises; forming a thin film oxide on the sidewalls of the trench extending from a height below h to about d; forming a liner in the trench, extending over the substrate and on the sidewalls to about the height d over the thin film oxide and forming a layer of tungsten in the trench over the liner.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: December 11, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Yanzhen Wang, Xinyuan Dou, Sipeng Gu
  • Patent number: 10074732
    Abstract: One illustrative method disclosed herein includes, among other things, forming first and second fins for a short channel FinFET device (“SCD”) and a long channel FinFET device (“LCD”), performing an oxidation process to form a sacrificial oxide material selectively on the channel portion of one of the first and second fins but not on the channel portion of the other of the first and second fins, removing the sacrificial oxide material from the fin on which it is formed so as to produce a reduced-size channel portion on that fin that is less than the initial size of the channel portion of the other non-oxidized fin, and forming first and second gate structures for the SCD and LCD devices.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: September 11, 2018
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Xinyuan Dou, Hui Zang, Hong Yu, Yanzhen Wang
  • Patent number: 10014296
    Abstract: Disclosed is a method of forming a semiconductor structure that includes one or more fin-type field effect transistors (FINFETs) and single-diffusion break (SDB) type isolation regions that are within a semiconductor fin and that define the active device region(s) for the FINFET(s). The isolation regions are formed so that they include a semiconductor liner. The semiconductor liner ensures that, when a source/drain recess is formed immediately adjacent to the isolation region, the bottom and opposing sides of the source/drain recess will have semiconductor surfaces onto which epitaxial semiconductor material for a source/drain region is grown. As a result, the angle of the top surface of the source/drain region relative to the top surface of the semiconductor fin is minimized. Thus, the risk that a subsequently formed source/drain contact will not reach the source/drain region is also minimized. Also disclosed is a semiconductor structure formed according to the method.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: July 3, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Xinyuan Dou, Hong Yu, Sipeng Gu, Yanzhen Wang
  • Publication number: 20170250284
    Abstract: An angled gas cluster ion beam is used for each sidewall and top of a fin (two applications) to form work-function metal layer(s) only on the sidewalls and top of each fin.
    Type: Application
    Filed: February 25, 2016
    Publication date: August 31, 2017
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Yanzhen WANG, Jidong HUANG, Hui ZANG
  • Patent number: 9748392
    Abstract: An angled gas cluster ion beam is used for each sidewall and top of a fin (two applications) to form work-function metal layer(s) only on the sidewalls and top of each fin.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: August 29, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Yanzhen Wang, Jidong Huang, Hui Zang