Patents by Inventor Yao-Sheng Lee

Yao-Sheng Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955976
    Abstract: A quadrant alternate switching phase interpolator includes first and second multiplexer circuits, a phase interpolator circuitry, and a controller circuitry. The first multiplexer circuit outputs one of first and second clock signals to be a first signal in response to first and third bits in a quadrant control code. The second multiplexer circuit outputs one of third and fourth clock signals to be a second signal in response to second and fourth bits in the quadrant control code, and the first, the third, the second, and fourth clock signals are sequentially different in phase by 90 degrees. The phase interpolator circuitry generates an output clock signal in response to the first and the second signals and phase control bits. The controller circuitry performs a bit-shift operation on the phase control bits to adjust a phase of the output clock signal.
    Type: Grant
    Filed: October 26, 2022
    Date of Patent: April 9, 2024
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: Yao-Chia Liu, Yuan-Sheng Lee
  • Patent number: 11621277
    Abstract: A joint level dielectric material layer is formed over a first alternating stack of first insulating layers and first spacer material layers. A first memory opening is formed with a tapered sidewall of the joint level dielectric material layer. A second alternating stack of second insulating layers and second spacer material layers is formed over the joint level dielectric material layer. An inter-tier memory opening is formed, which includes a volume of an second memory opening that extends through the second alternating stack and a volume of the first memory opening. A memory film and a semiconductor channel are formed in the inter-tier memory opening with respective tapered portions overlying the tapered sidewall of the joint level dielectric material layer.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: April 4, 2023
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Monica Titus, Zhixin Cui, Senaka Kanakamedala, Yao-Sheng Lee, Chih-Yu Lee
  • Patent number: 11469241
    Abstract: An alternating stack of insulating layers and spacer material layers can be formed over a substrate. The spacer material layers may be formed as, or may be subsequently replaced with, electrically conductive layers. A memory opening can be formed through the alternating stack, and annular lateral recesses are formed at levels of the insulating layers. Metal portions are formed in the annular lateral recesses, and a semiconductor material layer is deposited over the metal portions. Metal-semiconductor alloy portions are formed by performing an anneal process, and are subsequently removed by performing a selective etch process. Remaining portions of the semiconductor material layer include a vertical stack of semiconductor material portions, which may be optionally converted, partly or fully, into silicon nitride material portions. The semiconductor material portions and/or the silicon nitride material portions can be employed as discrete charge storage elements.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: October 11, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Raghuveer S. Makala, Senaka Kanakamedala, Fei Zhou, Yao-Sheng Lee
  • Patent number: 11430736
    Abstract: A semiconductor structure includes first metal lines located above at least one semiconductor device, and a continuous metal organic framework (MOF) material layer including lower MOF portions that are located between neighboring pairs of first metal lines and an upper MOF matrix portion that continuously extends over the first metal lines and connected to each of the lower MOF portions.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: August 30, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Ramy Nashed Bassely Said, Raghuveer S. Makala, Senaka Kanakamedala, Yao-Sheng Lee
  • Patent number: 11387250
    Abstract: A three-dimensional memory device includes a vertically alternating stack of insulating layers and electrically conductive layers located over a top surface of a substrate and memory stack structures extending through the alternating stack. Each of the memory stack structures contains a respective memory film and a respective vertical semiconductor channel, and each of the insulating layers contains a metal-organic framework (MOF) material portion. The MOF material portion has a low dielectric constant, and reduces RC coupling between the electrically conductive layers. An optional airgap may be located within the MOF material portion to further reduce the effective dielectric constant. Optionally, discrete charge storage regions or floating gates may be formed only at the levels of the electrically conductive layers to reduce program disturb and noise in the device.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: July 12, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Ramy Nashed Bassely Said, Senaka Kanakamedala, Fei Zhou, Raghuveer S. Makala, Yao-Sheng Lee
  • Patent number: 11387244
    Abstract: An alternating stack of insulating layers and spacer material layers can be formed over a substrate. The spacer material layers may be formed as, or may be subsequently replaced with, electrically conductive layers. A memory opening can be formed through the alternating stack, and annular lateral recesses are formed at levels of the insulating layers. Metal portions are formed in the annular lateral recesses, and a semiconductor material layer is deposited over the metal portions. Metal-semiconductor alloy portions are formed by performing an anneal process, and are subsequently removed by performing a selective etch process. Remaining portions of the semiconductor material layer include a vertical stack of semiconductor material portions, which may be optionally converted, partly or fully, into silicon nitride material portions. The semiconductor material portions and/or the silicon nitride material portions can be employed as discrete charge storage elements.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: July 12, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Raghuveer S. Makala, Senaka Kanakamedala, Fei Zhou, Yao-Sheng Lee
  • Publication number: 20220208785
    Abstract: An alternating stack of first material layers and second material layers is formed over a substrate. A hard mask layer is formed over the alternating stack. Optionally, an additional hard mask layer can be formed over the hard mask layer. A photoresist layer is applied and patterned, and cavities are formed in the hard mask layer by performing a first anisotropic etch process that transfers a pattern of the openings in the photoresist layer through the hard mask layer. Via openings are formed through an upper portion of the alternating stack by performing a second anisotropic etch process. A cladding liner can be optionally formed on sidewalls of the cavities in the hard mask layer. The via openings can be vertically extend through all layers within the alternating stack by performing a third anisotropic etch process.
    Type: Application
    Filed: December 29, 2020
    Publication date: June 30, 2022
    Inventors: Monica TITUS, Senaka KANAKAMEDALA, Rahul SHARANGPANI, Raghuveer S. MAKALA, Yao-Sheng LEE
  • Patent number: 11296028
    Abstract: A structure, such as a semiconductor device, includes metal line structures located over a substrate and laterally spaced apart from each other. Each of the metal line structures includes planar metallic liner including a first metal element and a metal line body portion includes a second metal element that is different from the first metal element. Metal-organic framework (MOF) material portions are located between neighboring pairs of the metal line structures and contain metal ions or clusters of the first metal element and organic ligands connected to the metal ions or clusters of the first metal element. Air gaps may be formed in the MOF material portions to further reduce the effective dielectric constant.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: April 5, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Ramy Nashed Bassely Said, Senaka Kanakamedala, Fei Zhou, Raghuveer S. Makala, Yao-Sheng Lee
  • Patent number: 11296101
    Abstract: A three-dimensional memory device includes a first-tier alternating stack of first insulating layers and first electrically conductive layers located over a substrate, an etch stop material layer located over the first-tier alternating stack, a second-tier alternating stack of second insulating layers and second electrically conductive layers located over the etch stop material layer, inter-tier memory openings vertically extending through the second-tier alternating stack, the etch stop material layer, and the first-tier alternating stack, and memory opening fill structures each including a memory film and a vertical semiconductor channel located in the inter-tier memory openings. The material of the etch stop material layer is different from materials of the first insulating layers, the second insulating layers, the first electrically conductive layers, and the second electrically conductive layers.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: April 5, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Yao-Sheng Lee, Senaka Kanakamedala, Raghuveer S. Makala, Johann Alsmeier
  • Publication number: 20220059462
    Abstract: A semiconductor structure includes first metal lines located above at least one semiconductor device, and a continuous metal organic framework (MOF) material layer including lower MOF portions that are located between neighboring pairs of first metal lines and an upper MOF matrix portion that continuously extends over the first metal lines and connected to each of the lower MOF portions.
    Type: Application
    Filed: August 24, 2020
    Publication date: February 24, 2022
    Inventors: Ramy Nashed Bassely SAID, Raghuveer S. MAKALA, Senaka KANAKAMEDALA, Yao-Sheng LEE
  • Patent number: 11244953
    Abstract: A three-dimensional memory device includes an alternating stack of insulating layers and word lines that are made of molybdenum layers located over a substrate, and memory stack structures extending through each layer in the alternating stack. Each of the memory stack structures includes a memory film and a vertical semiconductor channel contacting an inner sidewall of the memory film. Each memory film includes a vertical stack of discrete tubular dielectric metal oxide spacers in contact with a respective one of the molybdenum layers, a continuous silicon oxide blocking dielectric layer contacting an inner sidewall of each of the tubular dielectric metal oxide spacers, a vertical stack of charge storage material portions, and a tunneling dielectric layer contacting each of the charge storage material portions and the vertical semiconductor channel.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: February 8, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Senaka Kanakamedala, Raghuveer S. Makala, Yao-Sheng Lee
  • Patent number: 11171097
    Abstract: A bonded assembly includes a first semiconductor die containing a first substrate, first semiconductor devices, and first bonding pads that are electrically connected to a respective node of the first semiconductor devices, a second semiconductor die containing a second substrate, second semiconductor devices, and second bonding pads that are electrically connected to a respective node of the second semiconductor devices and bonded to a respective one of the first bonding pads, and at least one metal-organic framework (MOF) dielectric layer that laterally surrounds at least one of the first bonding pads and the second bonding pads.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: November 9, 2021
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Ramy Nashed Bassely Said, Raghuveer S. Makala, Senaka Kanakamedala, Fei Zhou, Yao-Sheng Lee
  • Publication number: 20210327889
    Abstract: An alternating stack of insulating layers and spacer material layers can be formed over a substrate. The spacer material layers may be formed as, or may be subsequently replaced with, electrically conductive layers. A memory opening can be formed through the alternating stack, and annular lateral recesses are formed at levels of the insulating layers. Metal portions are formed in the annular lateral recesses, and a semiconductor material layer is deposited over the metal portions. Metal-semiconductor alloy portions are formed by performing an anneal process, and are subsequently removed by performing a selective etch process. Remaining portions of the semiconductor material layer include a vertical stack of semiconductor material portions, which may be optionally converted, partly or fully, into silicon nitride material portions. The semiconductor material portions and/or the silicon nitride material portions can be employed as discrete charge storage elements.
    Type: Application
    Filed: April 15, 2020
    Publication date: October 21, 2021
    Inventors: Raghuveer S. MAKALA, Senaka KANAKAMEDALA, Fei ZHOU, Yao-Sheng LEE
  • Publication number: 20210327890
    Abstract: An alternating stack of insulating layers and spacer material layers can be formed over a substrate. The spacer material layers may be formed as, or may be subsequently replaced with, electrically conductive layers. A memory opening can be formed through the alternating stack, and annular lateral recesses are formed at levels of the insulating layers. Metal portions are formed in the annular lateral recesses, and a semiconductor material layer is deposited over the metal portions. Metal-semiconductor alloy portions are formed by performing an anneal process, and are subsequently removed by performing a selective etch process. Remaining portions of the semiconductor material layer include a vertical stack of semiconductor material portions, which may be optionally converted, partly or fully, into silicon nitride material portions. The semiconductor material portions and/or the silicon nitride material portions can be employed as discrete charge storage elements.
    Type: Application
    Filed: April 15, 2020
    Publication date: October 21, 2021
    Inventors: Raghuveer S. MAKALA, Senaka KANAKAMEDALA, Fei ZHOU, Yao-Sheng LEE
  • Publication number: 20210305266
    Abstract: A three-dimensional memory device includes a first-tier alternating stack of first insulating layers and first electrically conductive layers located over a substrate, an etch stop material layer located over the first-tier alternating stack, a second-tier alternating stack of second insulating layers and second electrically conductive layers located over the etch stop material layer, inter-tier memory openings vertically extending through the second-tier alternating stack, the etch stop material layer, and the first-tier alternating stack, and memory opening fill structures each including a memory film and a vertical semiconductor channel located in the inter-tier memory openings. The material of the etch stop material layer is different from materials of the first insulating layers, the second insulating layers, the first electrically conductive layers, and the second electrically conductive layers.
    Type: Application
    Filed: March 27, 2020
    Publication date: September 30, 2021
    Inventors: Yao-Sheng Lee, Senaka KANAKAMEDALA, Raghuveer S. Makala, Johann ALSMEIER
  • Patent number: 11114406
    Abstract: A first semiconductor die and a second semiconductor die can be bonded in a manner that enhances alignment of bonding pads. Non-uniform deformation of a first wafer including first semiconductor dies can be compensated for by forming a patterned stress-generating film on a backside of the first wafer. Metallic bump portions can be formed on concave surfaces of metallic bonding pads by a selective metal deposition process to reduce gaps between pairs of bonded metallic bonding pads. Pad-to-pad pitch can be adjusted on a semiconductor die to match the pad-to-pad pitch of another semiconductor die employing a tilt-shift operation in a lithographic exposure tool. A chuck configured to provide non-uniform displacement across a wafer can be employed to hold a wafer in a contoured shape for bonding with another wafer in a matching contoured position. Independently height-controlled pins can be employed to hold a wafer in a non-planar configuration.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: September 7, 2021
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Senaka Kanakamedala, Raghuveer S. Makala, Yao-Sheng Lee, Jian Chen
  • Publication number: 20210265372
    Abstract: A three-dimensional memory device includes an alternating stack of insulating layers and word lines that are made of molybdenum layers located over a substrate, and memory stack structures extending through each layer in the alternating stack. Each of the memory stack structures includes a memory film and a vertical semiconductor channel contacting an inner sidewall of the memory film. Each memory film includes a vertical stack of discrete tubular dielectric metal oxide spacers in contact with a respective one of the molybdenum layers, a continuous silicon oxide blocking dielectric layer contacting an inner sidewall of each of the tubular dielectric metal oxide spacers, a vertical stack of charge storage material portions, and a tunneling dielectric layer contacting each of the charge storage material portions and the vertical semiconductor channel.
    Type: Application
    Filed: February 26, 2020
    Publication date: August 26, 2021
    Inventors: Senaka KANAKAMEDALA, Raghuveer S. MAKALA, Yao-Sheng LEE
  • Publication number: 20210233881
    Abstract: A bonded assembly includes a first semiconductor die containing a first substrate, first semiconductor devices, and first bonding pads that are electrically connected to a respective node of the first semiconductor devices, a second semiconductor die containing a second substrate, second semiconductor devices, and second bonding pads that are electrically connected to a respective node of the second semiconductor devices and bonded to a respective one of the first bonding pads, and at least one metal-oxide framework (MOF) dielectric layer that laterally surrounds at least one of the first bonding pads and the second bonding pads.
    Type: Application
    Filed: January 28, 2020
    Publication date: July 29, 2021
    Inventors: Ramy Nashed Bassely SAID, Raghuveer S. MAKALA, Senaka KANAKAMEDALA, Fei ZHOU, Yao-Sheng LEE
  • Publication number: 20210193674
    Abstract: A three-dimensional memory device includes a vertically alternating stack of insulating layers and electrically conductive layers located over a top surface of a substrate and memory stack structures extending through the alternating stack. Each of the memory stack structures contains a respective memory film and a respective vertical semiconductor channel, and each of the insulating layers contains a metal-organic framework (MOF) material portion. The MOF material portion has a low dielectric constant, and reduces RC coupling between the electrically conductive layers. An optional airgap may be located within the MOF material portion to further reduce the effective dielectric constant. Optionally, discrete charge storage regions or floating gates may be formed only at the levels of the electrically conductive layers to reduce program disturb and noise in the device.
    Type: Application
    Filed: December 20, 2019
    Publication date: June 24, 2021
    Inventors: Ramy Nashed Bassely SAID, Senaka KANAKAMEDALA, Fei ZHOU, Raghuveer S. MAKALA, Yao-Sheng LEE
  • Publication number: 20210193585
    Abstract: A structure, such as a semiconductor device, includes metal line structures located over a substrate and laterally spaced apart from each other. Each of the metal line structures includes planar metallic liner including a first metal element and a metal line body portion includes a second metal element that is different from the first metal element. Metal-organic framework (MOF) material portions are located between neighboring pairs of the metal line structures and contain metal ions or clusters of the first metal element and organic ligands connected to the metal ions or clusters of the first metal element. Air gaps may be formed in the MOF material portions to further reduce the effective dielectric constant.
    Type: Application
    Filed: December 20, 2019
    Publication date: June 24, 2021
    Inventors: Ramy Nashed Bassely SAID, Senaka KANAKAMEDALA, Fei ZHOU, Raghuveer S. MAKALA, Yao-Sheng LEE