Patents by Inventor Yaqub Hanna

Yaqub Hanna has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11959097
    Abstract: Methods of generating a synthetic embryo are provided. Accordingly, there is provided a method of generating a synthetic embryo comprising inducing expression of a factor that induces differentiation to trophectoderm cells in a subpopulation of naïve pluripotent stem cells (PSCs) to obtain a trophectoderm primed cells; inducing expression of a factor that induces differentiation to extra embryonic primitive endodermal cells in a second subpopulation of naïve PSCs to obtain extra embryonic primitive endodermal primed cells; and mixing said trophectoderm primed cells and said extra embryonic primitive endodermal primed cells with naïve PSCs under conditions that allow formation of aggregated cells. Also provided are articles of manufactures, mixtures and aggregates of cells and methods of using same.
    Type: Grant
    Filed: July 27, 2023
    Date of Patent: April 16, 2024
    Assignee: Yeda Research and Development Co. Ltd.
    Inventors: Yaqub Hanna, Sergey Viukov, Emilie Wildschutz, Noa Novershtern, Carine Joubran, Segev Naveh Tassa, Alejandro Castrejon Aguilera, Bernardo Oldak, Shadi Tarazi, Francesco Roncato
  • Patent number: 11920164
    Abstract: A culture medium is disclosed which comprises STAT3 activator, an ERK1/2 inhibitor and an Axin stabilizer, and optionally also a PKC inhibitor. Cell cultures comprising same and uses thereof are also disclosed.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: March 5, 2024
    Assignee: Yeda Research and Development Co. Ltd.
    Inventors: Yaqub Hanna, Noa Novershtern, Yoach Rais
  • Publication number: 20240026262
    Abstract: Methods and devices for ex-utero mouse embryonic development are provided. Accordingly, there is provided a method of ex-utero culturing a mouse embryo at a zygote stage under conditions that allow developments of the embryo to organogenesis or any developmental stage therein-between. Also provided a fetal incubation system, and methods of using same.
    Type: Application
    Filed: September 18, 2023
    Publication date: January 25, 2024
    Applicant: Yeda Research and Development Co. Ltd.
    Inventor: Yaqub HANNA
  • Publication number: 20240010973
    Abstract: Methods of generating a synthetic embryo are provided. Accordingly, there is provided a method of generating a synthetic embryo comprising inducing expression of a factor that induces differentiation to trophectoderm cells in a subpopulation of naïve pluripotent stem cells (PSCs) to obtain a trophectoderm primed cells; inducing expression of a factor that induces differentiation to extra embryonic primitive endodermal cells in a second subpopulation of naïve PSCs to obtain extra embryonic primitive endodermal primed cells; and mixing said trophectoderm primed cells and said extra embryonic primitive endodermal primed cells with naïve PSCs under conditions that allow formation of aggregated cells. Also provided are articles of manufactures, mixtures and aggregates of cells and methods of using same.
    Type: Application
    Filed: July 27, 2023
    Publication date: January 11, 2024
    Applicant: Yeda Research and Development Co. Ltd.
    Inventors: Yaqub HANNA, Sergey VIUKOV, Emilie WILDSCHUTZ, Noa NOVERSHTERN, Carine JOUBRAN, Segev NAVEH TASSA, Alejandro CASTREJON AGUILERA, Bernardo OLDAK, Shadi TARAZI, Francesco RONCATO
  • Patent number: 11851670
    Abstract: The disclosure relates to a method of reprogramming one or more somatic cells, e.g., partially differentiated or fully/terminally differentiated somatic cells, to a less differentiated state, e.g., a pluripotent or multipotent state. In further embodiments the invention also relates to reprogrammed somatic cells produced by methods of the invention, to chimeric animals comprising reprogrammed somatic cells of the invention, to uses of said cells, and to methods for identifying agents useful for reprogramming somatic cells.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: December 26, 2023
    Assignee: Whitehead Institute for Biomedical Research
    Inventors: Rudolf Jaenisch, Bryce Woodbury Carey, Yaqub Hanna
  • Publication number: 20210363495
    Abstract: A culture medium comprising a WNT inhibitor, a SRC inhibitor and a protein kinase C (PKC) inhibitor is disclosed. The medium is devoid of an amount of GSK3beta inhibitor that increases beta-catenin translocation to the nucleus of a pluripotent stem cell being cultured in the culture medium. Uses thereof are also disclosed.
    Type: Application
    Filed: July 22, 2021
    Publication date: November 25, 2021
    Applicant: Yeda Research and Development Co. Ltd.
    Inventors: Yaqub HANNA, Noa NOVERSHTERN, Tom Haim SHANI, Sergey VIUKOV, Rada MASSARWA, Jonathan BAYERL, Muneef AYYASH
  • Publication number: 20210253998
    Abstract: Provided is an isolated human naive pluripotent stem cell (PSC), wherein: (i) when the naive PSC is a female PSC, then said naive female PSC has two unmethylated alleles of an X-inactive specific transcript (XIST) gene; and (ii) when said naive PSC is a male PSC, then said naive male PSC has an unmethylated allele of said XIST gene. Also provided is a culture medium which comprises an ERK1/2 inhibitor, a GSK3beta inhibitor, a p38 inhibitor, a JNK inhibitor, a STAT3 activator and at least one agent selected from the group consisting of: bFGF, TGFbeta 1, a PKC inhibitor, a ROCK inhibitor and a NOTCH inhibitor; or at least agent selected from the group consisting of: a TGFR inhibitor, a FGFR inhibitor, a PKC inhibitor, a ROCK inhibitor and a NOTCH inhibitor.
    Type: Application
    Filed: December 10, 2020
    Publication date: August 19, 2021
    Applicant: Yeda Research and Development Co. Ltd.
    Inventors: Yaqub HANNA, Noa NOVERSHTERN, Yoach RAIS
  • Patent number: 10920192
    Abstract: Provided is an isolated human naive pluripotent stem cell (PSC), wherein: (i) when the naive PSC is a female PSC, then said naive female PSC has two unmethylated alleles of an X-inactive specific transcript (XIST) gene; and (ii) when said naive PSC is a male PSC, then said naive male PSC has an unmethylated allele of said XIST gene. Also provided is a culture medium which comprises an ERK1/2 inhibitor, a GSK3beta inhibitor, a p38 inhibitor, a JNK inhibitor, a STAT3 activator and at least one agent selected from the group consisting of: bFGF, TGFbeta 1, a PKC inhibitor, a ROCK inhibitor and a NOTCH inhibitor; or at least agent selected from the group consisting of: a TGFR inhibitor, a FGFR inhibitor, a PKC inhibitor, a ROCK inhibitor and a NOTCH inhibitor.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: February 16, 2021
    Assignee: Yeda Research and Development Co. Ltd.
    Inventors: Yaqub Hanna, Noa Novershtern, Yoach Rais
  • Publication number: 20190241874
    Abstract: The disclosure relates to a method of reprogramming one or more somatic cells, e.g., partially differentiated or fully/terminally differentiated somatic cells, to a less differentiated state, e.g., a pluripotent or multipotent state. In further embodiments the invention also relates to reprogrammed somatic cells produced by methods of the invention, to uses of said cells, and to methods for identifying agents useful for reprogramming somatic cells.
    Type: Application
    Filed: September 28, 2018
    Publication date: August 8, 2019
    Inventors: Rudolf Jaenisch, Yaqub Hanna, Marius Wernig, Christopher J. Lengner, Alexander Meissner, Oliver Tobias Brambrink, G. Grant Welstead, Ruth Foreman
  • Patent number: 10093904
    Abstract: The disclosure relates to a method of reprogramming one or more somatic cells, e.g., partially differentiated or fully/terminally differentiated somatic cells, to a less differentiated state, e.g., a pluripotent or multipotent state. In further embodiments the invention also relates to reprogrammed somatic cells produced by methods of the invention, to uses of said cells, and to methods for identifying agents useful for reprogramming somatic cells.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: October 9, 2018
    Assignee: Whitehead Institute for Biomedical Research
    Inventors: Rudolf Jaenisch, Yaqub Hanna, Marius Wernig, Christopher J. Lengner, Alexander Meissner, Oliver Tobias Brambrink, G. Grant Welstead, Ruth Foreman
  • Publication number: 20170342386
    Abstract: The disclosure relates to a method of reprogramming one or more somatic cells, e.g., partially differentiated or fully/terminally differentiated somatic cells, to a less differentiated state, e.g., a pluripotent or multipotent state. In further embodiments the invention also relates to reprogrammed somatic cells produced by methods of the invention, to uses of said cells, and to methods for identifying agents useful for reprogramming somatic cells.
    Type: Application
    Filed: May 26, 2017
    Publication date: November 30, 2017
    Inventors: Rudolf Jaenisch, Yaqub Hanna, Marius Wernig, Christopher J. Lengner, Alexander Meissner, Oliver Tobias Brambrink, G. Grant Welstead, Ruth Foreman
  • Publication number: 20170275593
    Abstract: A culture medium is disclosed which comprises STAT3 activator, an ERK1/2 inhibitor and an Axin stabilizer, and optionally also a PKC inhibitor. Cell cultures comprising same and uses thereof are also disclosed.
    Type: Application
    Filed: July 30, 2015
    Publication date: September 28, 2017
    Applicant: Yeda Research and Development Co. Ltd.
    Inventors: Yaqub HANNA, Noa NOVERSHTERN, Yoach RAIS
  • Patent number: 9714414
    Abstract: The disclosure relates to a method of reprogramming one or more somatic cells, e.g., partially differentiated or fully/terminally differentiated somatic cells, to a less differentiated state, e.g., a pluripotent or multipotent state. In further embodiments the invention also relates to reprogrammed somatic cells produced by methods of the invention, to uses of said cells, and to methods for identifying agents useful for reprogramming somatic cells.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: July 25, 2017
    Assignee: Whitehead Institute for Biomedical Research
    Inventors: Rudolf Jaenisch, Yaqub Hanna, Marius Wernig, Christopher J. Lengner, Alexander Meissner, Oliver Tobias Brambrink, G. Grant Welstead, Ruth Foreman
  • Patent number: 9382515
    Abstract: The disclosure relates to a method of reprogramming one or more somatic cells, e.g., partially differentiated or fully/terminally differentiated somatic cells, to a less differentiated state, e.g., a pluripotent or multipotent state. In further embodiments the invention also relates to reprogrammed somatic cells produced by methods of the invention, to uses of said cells, and to methods for identifying agents useful for reprogramming somatic cells.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: July 5, 2016
    Assignee: Whitehead Institute for Biomedical Research
    Inventors: Rudolf Jaenisch, Yaqub Hanna, Marius Wernig, Christopher J. Lengner, Alexander Meissner, Oliver Tobias Brambrink, G. Grant Welstead, Ruth Foreman
  • Publication number: 20150118755
    Abstract: The disclosure relates to a method of reprogramming one or more somatic cells, e.g., partially differentiated or fully/terminally differentiated somatic cells, to a less differentiated state, e.g., a pluripotent or multipotent state. In further embodiments the invention also relates to reprogrammed somatic cells produced by methods of the invention, to uses of said cells, and to methods for identifying agents useful for reprogramming somatic cells.
    Type: Application
    Filed: August 29, 2014
    Publication date: April 30, 2015
    Inventors: Rudolf Jaenisch, Yaqub Hanna, Marius Wernig, Christopher J. Lengner, Alexander Meissner, Oliver Tobias Brambrink, G. Grant Welstead, Ruth Foreman
  • Publication number: 20140315301
    Abstract: Provided is an isolated human naive pluripotent stem cell (PSC), wherein: (i) when the naive PSC is a female PSC, then said naive female PSC has two unmethylated alleles of an X-inactive specific transcript (XIST) gene; and (ii) when said naive PSC is a male PSC, then said naive male PSC has an unmethylated allele of said XIST gene. Also provided is a culture medium which comprises an ERK1/2 inhibitor, a GSK3beta inhibitor, a p38 inhibitor, a JNK inhibitor, a STAT3 activator and at least one agent selected from the group consisting of: bFGF, TGFbeta 1, a PKC inhibitor, a ROCK inhibitor and a NOTCH inhibitor; or at least agent selected from the group consisting of: a TGFR inhibitor, a FGFR inhibitor, a PKC inhibitor, a ROCK inhibitor and a NOTCH inhibitor.
    Type: Application
    Filed: April 23, 2014
    Publication date: October 23, 2014
    Applicant: Yeda Research and Development Co. Ltd.
    Inventors: Yaqub HANNA, Noa Novershtern, Yoach Rais
  • Publication number: 20110088107
    Abstract: The invention provides compositions and methods useful for deriving or culturing vertebrate ES cells. Certain inventive methods comprise deriving or culturing vertebrate ES cells using medium that comprises a compound that replaces Klf4 or c-Myc in generating iPS cells. The invention provides NOD ES cells and methods of deriving or culturing them.
    Type: Application
    Filed: April 26, 2010
    Publication date: April 14, 2011
    Inventors: Yaqub Hanna, Rudolf Jaenisch