Patents by Inventor Ye Han

Ye Han has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240186506
    Abstract: The present invention relates to a positive electrode active material and a lithium secondary battery using a positive electrode containing the positive electrode active material. More particularly, the present invention relates to a positive electrode active material that is able to solve a problem of increased resistance according to an increase in Ni content by forming a charge transport channel in a lithium composite oxide and a lithium secondary battery using a positive electrode containing the positive electrode active material.
    Type: Application
    Filed: February 14, 2024
    Publication date: June 6, 2024
    Applicant: ECOPRO BM CO., LTD.
    Inventors: Moon Ho CHOI, Jun Won SUH, Jin Kyeong YUN, Jung Han LEE, Mi Hye YUN, Seung Woo CHOI, Gwang Seok CHOE, Ye Ri JANG, Joong Ho BAE
  • Patent number: 11942635
    Abstract: The present invention relates to a positive electrode active material and a lithium secondary battery using a positive electrode containing the positive electrode active material. More particularly, the present invention relates to a positive electrode active material that is able to solve a problem of increased resistance according to an increase in Ni content by forming a charge transport channel in a lithium composite oxide and a lithium secondary battery using a positive electrode containing the positive electrode active material.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: March 26, 2024
    Assignee: ECOPRO BM CO., LTD.
    Inventors: Moon Ho Choi, Jun Won Suh, Jin Kyeong Yun, Jung Han Lee, Mi Hye Yun, Seung Woo Choi, Gwang Seok Choe, Ye Ri Jang, Joong Ho Bae
  • Publication number: 20230391714
    Abstract: Disclosed herein are substituted phenyl compounds of formula I as defined herein that may be utilized as inhibitors of the interaction between the subunits of hyperpolarization-activated cyclic-nucleotide gated (HCN) channels, such as HCN1, and an auxiliary subunit of HCN channels which is the tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b). The disclosed compounds may be used in pharmaceutical compositions and methods for treating neurological diseases and disorders such as depression, and in particular Major Depressive Disorder (MDD).
    Type: Application
    Filed: June 7, 2023
    Publication date: December 7, 2023
    Inventors: Gary E. Schiltz, Iredia David Iyamu, Ye Han, Dane M. Chetkovich, Kyle A. Lyman
  • Patent number: 11788969
    Abstract: A real-time, on-line method and analytical system for determining halohydrocarbons in water which operate by (1) extracting on-line samples; (2) purging volatile halohydrocarbons from the water (e.g., with air or nitrogen); (3) carrying the purge gas containing the analytes of interest over a porous surface where the analytes are adsorbed; (4) recovering the analytes from the porous surface with heat (thermal desorption) or solvent (solvent elution) to drive the analytes into an organic chemical mixture; (5) generating an optical change (e.g., color change) in dependence upon a reaction involving the analytes and a pyridine derivative; and (6) measuring optical characteristics associated with the reaction to quantify the volatile halogenated hydrocarbon concentration.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: October 17, 2023
    Assignee: AMS Trace Metals, Inc.
    Inventors: Harmesh K. Saini, Michael J. West, Qin Wang, James Garvey, Paul Rand, Mark Angelo, David Johnston, Robert Ormond, Ye Han
  • Publication number: 20220259306
    Abstract: Provided are an antibody targeting NKG2A, a preparation method therefor and use thereof. Specifically, provided is a new mouse or humanized monoclonal antibody targeting NKG2A, and a method for preparing the monoclonal antibody. The monoclonal antibody can bind to an NKG2A antigen with high specificity, and has high affinity and significant activities such as anti-tumor activity.
    Type: Application
    Filed: November 6, 2019
    Publication date: August 18, 2022
    Inventors: Qing DUAN, Lile LIU, Dazhi YANG, Jing GAO, Lili HU, Ruirui SUI, Dongxu WANG, Ye HAN, Rongrong XIE, Yan LU, Xiaohui SHAO, Jie ZHANG, Wenming ZHOU, Cuicui GUO, Guozhen TONG, Lina WANG, Chaohui DAI, Mengying WANG
  • Publication number: 20220098319
    Abstract: An antibody targeting CD73, a preparation method therefor and a use thereof. The provided monoclonal antibody can bind to a CD73 antigen with high specificity, and has high affinity and significant antitumor activity.
    Type: Application
    Filed: January 13, 2020
    Publication date: March 31, 2022
    Inventors: Dongxu WANG, Qing DUAN, Lile LIU, Tatchi Teddy YANG, Hu LIU, Ye HAN, Rongrong XIE, Xiaohui SHAO, Peng WANG, Qin ZHONG, Yajun HUANG, Jian WU, Meiling WANG, Yuandong WANG
  • Patent number: 11241478
    Abstract: Disclosed are methods and compositions for treating a subject having a neurological disorder such as major depressive disorder (MDD). The methods and compositions may be utilized in order to inhibit trafficking of hyperpolarization-activated cyclic nucleotide gated (HCN) channels or subunits thereof, in some embodiments, by inhibiting an interaction between the HCN channels or the subunits thereof and an auxiliary protein or a chaperone protein for the HCN channels or the subunits thereof such as tetratricopeptide repeat (TPR)-containing Rab8b interacting (TRIP8b) protein or a variant thereof. The HCN channels of the disclosed methods may comprise, for example, HCN1 subunits, HCN2 subunits, or a combination thereof. In the disclosed methods, trafficking of the HCN channels or subunits preferably results in inhibiting distal dendritic enrichment of HCN1 and HCN2 in pyramidal neurons of hippocampal area CA1.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: February 8, 2022
    Assignee: Northwestern University
    Inventors: Dane M. Chetkovich, Ye Han, Kyle Lyman, Robert John Heuermann
  • Publication number: 20210172878
    Abstract: A real-time, on-line method and analytical system for determining halohydrocarbons in water which operate by (1) extracting on-line samples; (2) purging volatile halohydrocarbons from the water (e.g., with air or nitrogen); (3) carrying the purge gas containing the analytes of interest over a porous surface where the analytes are adsorbed; (4) recovering the analytes from the porous surface with heat (thermal desorption) or solvent (solvent elution) to drive the analytes into an organic chemical mixture; (5) generating an optical change (e.g., color change) in dependence upon a reaction involving the analytes and a pyridine derivative; and (6) measuring optical characteristics associated with the reaction to quantify the volatile halogenated hydrocarbon concentration.
    Type: Application
    Filed: October 19, 2020
    Publication date: June 10, 2021
    Inventors: Harmesh K. Saini, Michael J. West, Qin Wang, James Garvey, Paul Rand, Mark Angelo, David Johnston, Robert Ormond, Ye Han
  • Patent number: 10845313
    Abstract: A real-time, on-line method and analytical system for determining halohydrocarbons in water which operate by (1) extracting on-line samples; (2) purging volatile halohydrocarbons from the water (e.g., with air or nitrogen); (3) carrying the purge gas containing the analytes of interest over a porous surface where the analytes are adsorbed; (4) recovering the analytes from the porous surface with heat (thermal desorption) or solvent (solvent elution) to drive the analytes into an organic chemical mixture; (5) generating an optical change (e.g., color change) in dependence upon a reaction involving the analytes and a pyridine derivative; and (6) measuring optical characteristics associated with the reaction to quantify the volatile halogenated hydrocarbon concentration.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: November 24, 2020
    Assignee: AMS Trace Metals, Inc.
    Inventors: Harmesh K. Saini, Michael J. West, Qin Wang, James Garvey, Paul Rand, Mark Angelo, David Johnston, Robert Ormond, Ye Han
  • Publication number: 20190079020
    Abstract: A real-time, on-line method and analytical system for determining halohydrocarbons in water which operate by (1) extracting on-line samples; (2) purging volatile halohydrocarbons from the water (e.g., with air or nitrogen); (3) carrying the purge gas containing the analytes of interest over a porous surface where the analytes are adsorbed; (4) recovering the analytes from the porous surface with heat (thermal desorption) or solvent (solvent elution) to drive the analytes into an organic chemical mixture; (5) generating an optical change (e.g., color change) in dependence upon a reaction involving the analytes and a pyridine derivative; and (6) measuring optical characteristics associated with the reaction to quantify the volatile halogenated hydrocarbon concentration.
    Type: Application
    Filed: June 8, 2018
    Publication date: March 14, 2019
    Inventors: Harmesh K. Saini, Michael J. West, Qin Wang, James Garvey, Paul Rand, Mark Angelo, David Johnston, Robert Ormond, Ye Han
  • Publication number: 20190038707
    Abstract: Disclosed are methods and compositions for treating a subject having a neurological disorder such as major depressive disorder (MDD). The methods and compositions may be utilized in order to inhibit trafficking of hyperpolarization-activated cyclic nucleotide gated (HCN) channels or subunits thereof, in some embodiments, by inhibiting an interaction between the HCN channels or the subunits thereof and an auxiliary protein or a chaperone protein for the HCN channels or the subunits thereof such as tetratricopeptide repeat (TPR)-containing Rab8b interacting (TRIP8b) protein or a variant thereof. The HCN channels of the disclosed methods may comprise, for example, HCN1 subunits, HCN2 subunits, or a combination thereof. In the disclosed methods, trafficking of the HCN channels or subunits preferably results in inhibiting distal dendritic enrichment of HCN1 and HCN2 in pyramidal neurons of hippocampal area CA1.
    Type: Application
    Filed: October 22, 2018
    Publication date: February 7, 2019
    Applicant: Northwestern University
    Inventors: Dane M. Chetkovich, Ye Han
  • Patent number: 10018567
    Abstract: A real-time, on-line method and analytical system for determining halohydrocarbons in water which operate by (1) extracting on-line samples; (2) purging volatile halohydrocarbons from the water (e.g., with air or nitrogen); (3) carrying the purge gas containing the analytes of interest over a porous surface where the analytes are adsorbed; (4) recovering the analytes from the porous surface with heat (thermal desorption) or solvent (solvent elution) to drive the analytes into an organic chemical mixture; (5) generating an optical change (e.g., color change) in dependence upon a reaction involving the analytes and a pyridine derivative; and (6) measuring optical characteristics associated with the reaction to quantify the volatile halogenated hydrocarbon concentration.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: July 10, 2018
    Assignee: AMS Trace Metals, Inc.
    Inventors: Harmesh K. Saini, Michael J. West, Qin Wang, James Garvey, Paul Rand, Mark Angelo, David Johnston, Robert Ormond, Ye Han
  • Publication number: 20160123889
    Abstract: A real-time, on-line method and analytical system for determining halohydrocarbons in water which operate by (1) extracting on-line samples; (2) purging volatile halohydrocarbons from the water (e.g., with air or nitrogen); (3) carrying the purge gas containing the analytes of interest over a porous surface where the analytes are adsorbed; (4) recovering the analytes from the porous surface with heat (thermal desorption) or solvent (solvent elution) to drive the analytes into an organic chemical mixture; (5) generating an optical change (e.g., color change) in dependence upon a reaction involving the analytes and a pyridine derivative; and (6) measuring optical characteristics associated with the reaction to quantify the volatile halogenated hydrocarbon concentration.
    Type: Application
    Filed: August 6, 2015
    Publication date: May 5, 2016
    Inventors: Harmesh K. Saini, Michael J. West, Qin Wang, James Garvey, Paul Rand, Marc Angelo, David Johnston, Robert Ormond, Ye Han
  • Patent number: 9134290
    Abstract: A real-time, on-line method and analytical system for determining halohydrocarbons in water which operate by (1) extracting on-line samples; (2) purging volatile halohydrocarbons from the water (e.g., with air or nitrogen); (3) carrying the purge gas containing the analytes of interest over a porous surface where the analytes are adsorbed; (4) recovering the analytes from the porous surface with heat (thermal desorption) or solvent (solvent elution) to drive the analytes into an organic chemical mixture; (5) generating an optical change (e.g., color change) in dependence upon a reaction involving the analytes and a pyridine derivative; and (6) measuring optical characteristics associated with the reaction to quantify the volatile halogenated hydrocarbon concentration.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: September 15, 2015
    Inventors: Harmesh K. Saini, Michael J. West, Qin Wang, James Garvey, Paul Rand, Marc Angelo, David Johnston, Robert Ormond, Ye Han
  • Publication number: 20130029427
    Abstract: A real-time, on-line method and analytical system for determining halohydrocarbons in water which operate by (1) extracting on-line samples; (2) purging volatile halohydrocarbons from the water (e.g., with air or nitrogen); (3) carrying the purge gas containing the analytes of interest over a porous surface where the analytes are adsorbed; (4) recovering the analytes from the porous surface with heat (thermal desorption) or solvent (solvent elution) to drive the analytes into an organic chemical mixture; (5) generating an optical change (e.g., color change) in dependence upon a reaction involving the analytes and a pyridine derivative; and (6) measuring optical characteristics associated with the reaction to quantify the volatile halogenated hydrocarbon concentration.
    Type: Application
    Filed: April 14, 2011
    Publication date: January 31, 2013
    Inventors: Harmesh K. Saini, Michael J. West, Qin Wang, James Garvey, Paul Rand, Marc Angelo, David Johnston, Robert Ormond, Ye Han
  • Patent number: 7358486
    Abstract: A method, system, and mixture for simultaneously cleaning and reconditioning at least a part of a sampling pathway of an inline automated mass spectrometry system are disclosed. A sampling pathway including a probe or a nebulizer, in one example, may be simultaneously reconditioned and cleaned by mixing an isotopically enriched species and/or natural abundant species with a cleaning solution, and then cleaning the sampling pathway with the spiked cleaning solution through various means and procedures.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: April 15, 2008
    Assignee: Metara, Inc.
    Inventor: Ye Han
  • Patent number: 7335877
    Abstract: An apparatus and method for improved inline and automated chemical analysis is provided, in particular disclosing signal optimization for an electrospray ionization mass spectrometer apparatus. A substantially inert pathway for ion analysis is provided by using substantially inert metals or polymers for pathway parts. Other enhancements and advantages are also disclosed, including an advantageous probe profile and metal foil cover.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: February 26, 2008
    Assignee: Metara, Inc.
    Inventors: Ye Han, Yuzhong Wang, Wenjing Yang
  • Publication number: 20060097144
    Abstract: In one embodiment, a method of analysis of a solution is provided including the acts of: (a) mixing a spike with a sample of the solution to allow equilibrium to occur therebetween; (b) ionizing the equilibrated diluted sample and spike in an atmospheric pressure ionizer (API) to produce ions; (c) processing the ions in a mass spectrometer to provide a ratio response; (d) characterizing the concentration of a constituent in the sample using the ratio response; and (e) cyclically repeating acts (a) through (d) under machine control to automatically monitor the concentration of the constituent in the solution over time.
    Type: Application
    Filed: December 12, 2005
    Publication date: May 11, 2006
    Inventors: Howard Kingston, Marc Anderson, Ye Han