Patents by Inventor Yea-Chuan M. Yeh

Yea-Chuan M. Yeh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6951819
    Abstract: In one embodiment, a method of forming a multijunction solar cell having lattice mismatched layers and lattice-matched layers comprises growing a top subcell having a first band gap over a growth semiconductor substrate. A middle subcell having a second band gap is grown over the top subcell, and a lower subcell having a third band gap is grown over the middle subcell. The lower subcell is substantially lattice-mismatched with respect to the growth semiconductor substrate. The first band gap of the top subcell is larger than the second band gap of the middle subcell. The second band gap of the middle subcell is larger than the third band gap of the lower subcell. A support substrate is formed over the lower subcell, and the growth semiconductor substrate is removed. In various embodiments, the multijunction solar cell may further comprise additional lower subcells. A parting layer may also be provided between the growth substrate and the top subcell in certain embodiments.
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: October 4, 2005
    Assignee: Blue Photonics, Inc.
    Inventors: Peter A. Iles, Frank F. Ho, Yea-Chuan M. Yeh
  • Publication number: 20040166681
    Abstract: In one embodiment, a method of forming a multijunction solar cell having lattice mismatched layers and lattice-matched layers comprises growing a top subcell having a first band gap over a growth semiconductor substrate. A middle subcell having a second band gap is grown over the top subcell, and a lower subcell having a third band gap is grown over the middle subcell. The lower subcell is substantially lattice-mismatched with respect to the growth semiconductor substrate. The first band gap of the top subcell is larger than the second band gap of the middle subcell. The second band gap of the middle subcell is larger than the third band gap of the lower subcell. A support substrate is formed over the lower subcell, and the growth semiconductor substrate is removed. In various embodiments, the multijunction solar cell may further comprise additional lower subcells. A parting layer may also be provided between the growth substrate and the top subcell in certain embodiments.
    Type: Application
    Filed: December 4, 2003
    Publication date: August 26, 2004
    Inventors: Peter A. Iles, Frank F. Ho, Yea-Chuan M. Yeh
  • Patent number: 4321099
    Abstract: A Schottky barrier solar cell consists of a thin substrate of low cost material with at least the top surface of the substrate being electrically conductive. A thin layer of heavily doped n-type polycrystalline germanium, with crystalline sizes in the submicron range, is deposited on the substrate. But first a passivation layer may be deposited on the substrate to prevent migration of impurities into the polycrystalline germanium on a substrate of low-cost conductive material. Then the polycrystalline germanium is recrystallized to increase the crystal sizes in the germanium layer to not less than 5 microns, and preferably considerably more. It serves as a base layer on which a thin layer of gallium arsenide is vapor-epitaxially grown to a selected thickness. Then, a thermally-grown oxide layer of a thickness of several tens of angstroms is formed on the gallium arsenide layer.
    Type: Grant
    Filed: January 16, 1981
    Date of Patent: March 23, 1982
    Inventors: Robert A. Administrator of The National Aeronautics and Space Administration, with respect to an invention of Frosch, Richard J. Stirn, Yea-Chuan M. Yeh
  • Patent number: 4278830
    Abstract: A Schottky barrier solar cell consists of a thin substrate of low cost material with at least the top surface of the substrate being electrically conductive. A thin layer of heavily doped n-type polycrystalline germanium, with crystalline sizes in the submicron range, is deposited on the substrate. But first a passivation layer may be deposited on the substrate to prevent migration of impurities into the polycrystalline germanium on a substrate of low-cost conductive material. Then the polycrystalline germanium is recrystallized to increase the crystal sizes in the germanium layer to not less than 5 microns, and preferably considerably more. It serves as a base layer on which a thin layer of gallium arsenide is vapor-epitaxially grown to a selected thickness. Then, a thermally-grown oxide layer of a thickness of several tens of angstroms is formed on the gallium arsenide layer.
    Type: Grant
    Filed: November 13, 1979
    Date of Patent: July 14, 1981
    Inventors: Robert A. Administrator of the National Aeronautics and Space Administration, with respect to an invention of Frosch, Richard J. Stirn, Yea-Chuan M. Yeh