Patents by Inventor Yeong-Jyh Tom Lii

Yeong-Jyh Tom Lii has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6686633
    Abstract: A semiconductor device includes a memory array of static-random-access memory cells. The SRAM cells are formed using a process flow more closely associated with logic-type devices. The SRAM cells are formed using one semiconductor layer compared to at least three typically seen with SRAM cells. The SRAM cells include many features that allow its dimensions to be scaled to very small dimensions (less than 0.25 microns and possible down to 0.1 microns or even smaller). A unique process integration scheme allows formation of local interconnects (522 and 524), wherein each local interconnect (522, 524) cross couples the inverters of the SRAM and is formed within a single opening (70). Also, interconnect portions (104) of word lines are laterally offset from silicon portions (36) of the same word line, so that the interconnect portions do not interfere with bit line connections.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: February 3, 2004
    Assignee: Motorola, Inc.
    Inventors: Craig S. Lage, Mousumi Bhat, Yeong-Jyh Tom Lii, Andrew G. Nagy, Larry E. Frisa, Stanley M. Filipiak, David L. O'Meara, T. P. Ong, Michael P. Woo, Terry G. Sparks, Carol M. Gelatos
  • Patent number: 6294820
    Abstract: A method for forming a tantalum-based anti-reflective coating (ARC) layer begins by forming an MOS metallic gate electrode layer (20) over a substrate (20). The MOS metallic gate electrode layer (20) is covered with an ARC layer (22). The ARC layer is preferably tantalum pentoxide or a tantalum pentoxide layer doped with one or more of nitrogen atoms and/or silicon atoms. The layers (22 and 20) are then selectively masked photoresist (24) that is selectively exposed to deep ultraviolet (DUV) radiation (28). The ARC layer (22) improves lithographic critical dimension (CD) control of the MOS metallic gate during exposure. The final MOS metallic gate is then patterned and etched using a fluorine-chlorine-fluorine time-progressed reactive ion etch (RIE) process, whereby metallic-gate MOS transistors are eventually formed.
    Type: Grant
    Filed: October 19, 1999
    Date of Patent: September 25, 2001
    Assignee: Motorola, Inc.
    Inventors: Kevin Lucas, Olubunmi Adetutu, Christopher C. Hobbs, Yolanda Musgrove, Yeong-Jyh Tom Lii
  • Patent number: 6184073
    Abstract: A semiconductor device includes a memory array of static-random-access memory cells. The SRAM cells are formed using a process flow more closely associated with logic-type devices. The SRAM cells are formed using one semiconductor layer compared to at least three typically seen with SRAM cells. The SRAM cells include many features that allow its dimensions to be scaled to very small dimensions (less than 0.25 microns and possible down to 0.1 microns or even smaller). A unique process integration scheme allows formation of local interconnects (522 and 524), wherein each local interconnect (522, 524) cross couples the inverters of the SRAM and is formed within a single opening (70). Also, interconnect portions (104) of word lines are laterally offset from silicon portions (36) of the same word line, so that the interconnect portions do not interfere with bit line connections.
    Type: Grant
    Filed: December 23, 1997
    Date of Patent: February 6, 2001
    Assignee: Motorola, Inc.
    Inventors: Craig S. Lage, Mousumi Bhat, Yeong-Jyh Tom Lii, Andrew G. Nagy, Larry E. Frisa, Stanley M. Filipiak, David L. O'Meara, T. P. Ong, Michael P. Woo, Terry G. Sparks, Carol M. Gelatos
  • Patent number: 6146948
    Abstract: A method for forming a gate dielectric having different thickness begins by providing a substrate (12). A sacrificial oxide (14) is formed overlying the substrate (12). A first portion (11) of the sacrificial oxide (14) is exposed to a carbon-containing plasma environment (20). This carbon-containing plasma environment (20) forms a carbon-containing layer (24) within the region (11). After forming this region (24), a wet etch chemistry (22) is used to remove remaining portions of the sacrificial oxide (14) without forming a layer (24) in the region (13). Furnace oxidation is then used to form regions (26a) and (26b) wherein the growth of region (26a) has been retarded by the presence of the region (24). Therefore, the regions (26a) and (26b) are differing in thickness and can be used to make different transistors having different current gains.
    Type: Grant
    Filed: June 3, 1997
    Date of Patent: November 14, 2000
    Assignee: Motorola Inc.
    Inventors: Wei Edwin Wu, Hsing-Huang Tseng, Phillip Earl Crabtree, Yeong-Jyh Tom Lii
  • Patent number: 6004850
    Abstract: A method for forming a tantalum-based anti-reflective coating (ARC) layer begins by forming an MOS metallic gate electrode layer (20) over a substrate (20). The MOS metallic gate electrode layer (20) is covered with an ARC layer (22). The ARC layer is preferably tantalum pentoxide or a tantalum pentoxide layer doped with one or more of nitrogen atoms and/or silicon atoms. The layers (22 and 20) are then selectively masked photoresist (24) that is selectively exposed to deep ultraviolet (DUV) radiation (28). The ARC layer (22) improves lithographic critical dimension (CD) control of the MOS metallic gate during exposure. The final MOS metallic gate is then patterned and etched using a fluorine-chlorine-fluorine time-progressed reactive ion etch (RIE) process, whereby metallic-gate MOS transistors are eventually formed.
    Type: Grant
    Filed: February 23, 1998
    Date of Patent: December 21, 1999
    Assignee: Motorola Inc.
    Inventors: Kevin Lucas, Olubunmi Adetutu, Christopher C. Hobbs, Yolanda Musgrove, Yeong-Jyh Tom Lii
  • Patent number: 5888588
    Abstract: A semiconductor device (10) includes a gate electrode (61) having a silicon/tungsten nitride/tungsten silicon nitride/tungsten silicide composition. The tungsten nitride film (21) and tungsten suicide film (23) are formed using chemical vapor deposition (CVD). The tungsten nitride film is formed using a tungsten halide and N.sub.2 R.sup.1 R.sup.2, where each of R.sup.1 and R.sup.2 is hydrogen, an alkyl group, an alkenyl group, or an alkynyl group. The tungsten nitride film (21) is an etch stop when patterning the tungsten silicide film (23). The CVD tungsten nitride film (21) helps to improve gate dielectric integrity and reduces interface traps when compared to a sputtered tungsten nitride film (21). Also, N.sub.2 R.sup.1 R.sup.2 can be used to remove halogens that are adsorbed onto walls of a reaction chamber than is cleaned between depositions of substrates.
    Type: Grant
    Filed: March 31, 1997
    Date of Patent: March 30, 1999
    Assignee: Motorola, Inc.
    Inventors: Rajan Nagabushnam, Olubunmi Adetutu, Yeong-Jyh Tom Lii