Patents by Inventor Yeong-Sheng Lee

Yeong-Sheng Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9362917
    Abstract: An LVDS (Low Voltage Differential Signaling) driving circuit includes a first transistor, a second transistor, a third transistor, a fourth transistor, a first resistor, a second resistor, and a bias driver. The first transistor is coupled between a supply voltage and a first node. The second transistor is coupled between the supply voltage and a second node. The third transistor is coupled between the first node and a ground voltage. The fourth transistor is coupled between the second node and the ground voltage. The first resistor is coupled between the first node and a third node. The second resistor is coupled between the second node and the third node. The bias driver generates bias signals for controlling the first, second, third, and fourth transistors according to a data signal.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: June 7, 2016
    Assignee: VIA ALLIANCE SEMICONDUCTOR CO., LTD.
    Inventor: Yeong-Sheng Lee
  • Publication number: 20160149576
    Abstract: An LVDS (Low Voltage Differential Signaling) driving circuit includes a first transistor, a second transistor, a third transistor, a fourth transistor, a first resistor, a second resistor, and a bias driver. The first transistor is coupled between a supply voltage and a first node. The second transistor is coupled between the supply voltage and a second node. The third transistor is coupled between the first node and a ground voltage. The fourth transistor is coupled between the second node and the ground voltage. The first resistor is coupled between the first node and a third node. The second resistor is coupled between the second node and the third node. The bias driver generates bias signals for controlling the first, second, third, and fourth transistors according to a data signal.
    Type: Application
    Filed: November 24, 2014
    Publication date: May 26, 2016
    Inventor: Yeong-Sheng LEE
  • Publication number: 20160149578
    Abstract: An LVDS (Low Voltage Differential Signaling) driving circuit includes a first transistor, a second transistor, a third transistor, a fourth transistor, a first resistor, a second resistor, and a bias driver. The first transistor is coupled between a supply voltage and a first node. The second transistor is coupled between the supply voltage and a second node. The third transistor is coupled between the first node and a ground voltage. The fourth transistor is coupled between the second node and the ground voltage. The first resistor is coupled between the first node and a third node. The second resistor is coupled between the second node and the third node. The bias driver generates bias signals for controlling the first, second, third, and fourth transistors according to a data signal.
    Type: Application
    Filed: June 5, 2015
    Publication date: May 26, 2016
    Inventor: Yeong-Sheng LEE
  • Patent number: 9337817
    Abstract: A hold-time optimization circuit includes a correction circuit and a delay control circuit. The delay control circuit delays a clock signal for a delay time so as to generate a delay clock signal. The correction circuit generates a correction pulse signal according to transition edges of a data signal and transition edges of the delay clock signal. The delay time of the delay control circuit is optimized according to the correction pulse signal. The data signal is sampled according to the delay clock signal.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: May 10, 2016
    Assignee: VIA ALLIANCE SEMICONDUCTOR CO., LTD.
    Inventor: Yeong-Sheng Lee
  • Patent number: 9337842
    Abstract: An LVDS (Low Voltage Differential Signaling) driving circuit includes a first transistor, a second transistor, a third transistor, a fourth transistor, a first resistor, a second resistor, and a bias driver. The first transistor is coupled between a supply voltage and a first node. The second transistor is coupled between the supply voltage and a second node. The third transistor is coupled between the first node and a ground voltage. The fourth transistor is coupled between the second node and the ground voltage. The first resistor is coupled between the first node and a third node. The second resistor is coupled between the second node and the third node. The bias driver generates bias signals for controlling the first, second, third, and fourth transistors according to a data signal.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: May 10, 2016
    Assignee: VIA ALLIANCE SEMICONDUCTOR CO., LTD.
    Inventor: Yeong-Sheng Lee
  • Patent number: 9337651
    Abstract: An electrostatic discharge (ESD) protection circuit includes a first n-type transistor, a discharge acceleration circuit and a discharge time circuit. The first n-type transistor has a first terminal coupled to a supply voltage, a second terminal coupled to a reference voltage, and a gate, wherein the first n-type transistor couples the supply voltage to the reference voltage during an ESD event at an I/O pad. The discharge acceleration circuit is coupled to the gate of the first n-type transistor to the I/O pad during the ESD event and coupled to the gate of the first n-type transistor to the reference voltage when there is no ESD event. The discharge time circuit, coupled to the discharge acceleration circuit and the supply voltage, controls a discharge time of the first n-type transistor of coupling the supply voltage to the reference voltage during the ESD event at the I/O pad.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: May 10, 2016
    Assignee: VIA ALLIANCE SEMICONDUCTOR CO., LTD.
    Inventor: Yeong-Sheng Lee
  • Patent number: 9246479
    Abstract: A low-offset bandgap circuit including a core bandgap circuit and an offset-cancelling circuit is provided. The low-offset bandgap circuit provides a reference voltage at an output node. The core bandgap circuit includes a core operational amplifier to generate a core current. The offset-cancelling circuit is coupled to two input terminals of the core operational amplifier. The offset-cancelling circuit is configured to generate a compensation current according to the voltages at the two input terminals of the core operational amplifier so as to compensate for an offset voltage of the core operational amplifier. The reference voltage is generated according to the core current and the compensation current.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: January 26, 2016
    Assignee: VIA TECHNOLOGIES, INC.
    Inventor: Yeong-Sheng Lee
  • Publication number: 20150365081
    Abstract: A hold-time optimization circuit includes a correction circuit and a delay control circuit. The delay control circuit delays a clock signal for a delay time so as to generate a delay clock signal. The correction circuit generates a correction pulse signal according to transition edges of a data signal and transition edges of the delay clock signal. The delay time of the delay control circuit is optimized according to the correction pulse signal. The data signal is sampled according to the delay clock signal.
    Type: Application
    Filed: June 17, 2014
    Publication date: December 17, 2015
    Inventor: Yeong-Sheng LEE
  • Publication number: 20150311700
    Abstract: An electrostatic discharge (ESD) protection circuit includes a first n-type transistor, a discharge acceleration circuit and a discharge time circuit. The first n-type transistor has a first terminal coupled to a supply voltage, a second terminal coupled to a reference voltage, and a gate, wherein the first n-type transistor couples the supply voltage to the reference voltage during an ESD event at an I/O pad. The discharge acceleration circuit is coupled to the gate of the first n-type transistor to the I/O pad during the ESD event and coupled to the gate of the first n-type transistor to the reference voltage when there is no ESD event. The discharge time circuit, coupled to the discharge acceleration circuit and the supply voltage, controls a discharge time of the first n-type transistor of coupling the supply voltage to the reference voltage during the ESD event at the I/O pad.
    Type: Application
    Filed: April 23, 2014
    Publication date: October 29, 2015
    Applicant: VIA Alliance Semiconductor Co., Ltd.
    Inventor: Yeong-Sheng LEE
  • Patent number: 9118308
    Abstract: A duty cycle corrector includes a VCD (Voltage-Controlled Delay) circuit, an edge detector, an SR latch, a mode controller, and a CP (Charge Pump) circuit. The VCD circuit delays an input clock signal for a delay period so as to generate a delay clock signal. The delay period is adjusted according to a CP control voltage. The edge detector detects clock edges of the input clock signal and the delay clock signal so as to correspondingly generate a first clock edge signal and a second clock edge signal. The SR latch generates a toggling signal according to the first clock edge signal and the second clock edge signal. The mode controller generates a mode control voltage. The CP circuit operates in different modes according to the mode control voltage. The CP circuit generates the CP control voltage according to the toggling signal and the mode control voltage.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: August 25, 2015
    Assignee: VIA TECHNOLOGIES, INC.
    Inventor: Yeong-Sheng Lee
  • Publication number: 20150207497
    Abstract: A low-offset bandgap circuit including a core bandgap circuit and an offset-cancelling circuit is provided. The low-offset bandgap circuit provides a reference voltage at an output node. The core bandgap circuit includes a core operational amplifier to generate a core current. The offset-cancelling circuit is coupled to two input terminals of the core operational amplifier. The offset-cancelling circuit is configured to generate a compensation current according to the voltages at the two input terminals of the core operational amplifier so as to compensate for an offset voltage of the core operational amplifier. The reference voltage is generated according to the core current and the compensation current.
    Type: Application
    Filed: January 20, 2014
    Publication date: July 23, 2015
    Applicant: VIA TECHNOLOGIES, INC.
    Inventor: Yeong-Sheng LEE
  • Patent number: 9083584
    Abstract: The present disclosure provides systems and methods for compensating channel modulation effects. Some embodiments comprise a differential switching circuit, a common mode modulation circuit, and a current compensation circuit. The current compensation circuit compensates for channel modulation effects.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: July 14, 2015
    Assignee: VIA TECHNOLOGIES, INC.
    Inventor: Yeong-Sheng Lee
  • Patent number: 9018986
    Abstract: An output buffer is provided. The output buffer is coupled to a first voltage source providing a first supply voltage and used for generating an output signal at an output terminal according to an input signal. The output buffer includes first and second transistors and a self-bias circuit. The first and second transistors are cascaded between the output terminal and a reference voltage. The self-bias circuit is coupled to the output terminal and the control electrode of the first transistor. When the output buffer does not receive the first supply voltage, the self-bias circuit provides a first bias voltage to the control electrode of the first transistor according to the output signal to decrease voltage differences between the control electrode and the input and output electrodes of the first transistor to be lower than a predetermined voltage.
    Type: Grant
    Filed: January 21, 2013
    Date of Patent: April 28, 2015
    Assignee: VIA Technologies, Inc.
    Inventor: Yeong-Sheng Lee
  • Patent number: 9000846
    Abstract: Some embodiments of the system comprise a current mirror with two switches (a first switch and a second switch) and two compensation circuits (a first compensation circuit and a second compensation circuit). In one embodiment, the first compensation circuit adjusts a drain voltage of the second switch based on a drain voltage of the first switch, and the second compensation circuit adjusts a current through the first switch based on the drain voltage of the second switch.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: April 7, 2015
    Assignee: VIA Technologies, Inc.
    Inventor: Yeong-Sheng Lee
  • Publication number: 20150049839
    Abstract: The present disclosure provides systems and methods for compensating channel modulation effects. Some embodiments comprise a differential switching circuit, a common mode modulation circuit, and a current compensation circuit. The current compensation circuit compensates for channel modulation effects.
    Type: Application
    Filed: August 16, 2013
    Publication date: February 19, 2015
    Applicant: VIA Technologies, Inc.
    Inventor: Yeong-Sheng Lee
  • Patent number: 8952725
    Abstract: A low voltage differential signal driving circuit including positive and negative differential output terminals, an automatic level selector, an output level detector and a transition accelerator. The positive and negative differential output terminals provide a transmission interface with a differential output signal for transmission of a data signal. The automatic level selector outputs a reference voltage corresponding to the transmission interface. The output level detector generates a low-high (or high-low) transition acceleration control signal based on the data signal, the reference voltage, and VTXP signal at the positive differential output terminal (or VTXN signal at the negative differential output terminal).
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: February 10, 2015
    Assignee: Via Technologies, Inc.
    Inventors: Yeong-Sheng Lee, Kuen-Chir Wang
  • Patent number: 8952734
    Abstract: A signal generation device is provided to generate an output signal with constant frequency. The signal generation device includes a frequency-control circuit and a voltage-controlled delay line. The frequency-control circuit includes a pulse generator, generating a reference pulse signal according to a transition of the reference signal and a comparison pulse signal according to a transition of the comparison result signal, to re-shape the reference signal and the comparison result signal into narrow pulses suitable for clocking and resetting flip-flops.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: February 10, 2015
    Assignee: Via Technologies, Inc.
    Inventor: Yeong-Sheng Lee
  • Publication number: 20140361835
    Abstract: Some embodiments of the system comprise a current mirror with two switches (a first switch and a second switch) and two compensation circuits (a first compensation circuit and a second compensation circuit). In one embodiment, the first compensation circuit adjusts a drain voltage of the second switch based on a drain voltage of the first switch, and the second compensation circuit adjusts a current through the first switch based on the drain voltage of the second switch.
    Type: Application
    Filed: July 11, 2013
    Publication date: December 11, 2014
    Inventor: Yeong-Sheng Lee
  • Patent number: 8890627
    Abstract: A voltage controlled oscillator generating an oscillation signal according to a first control signal without a silent region. The voltage controlled oscillator includes a control signal adjuster and a plurality of delay cells. The control signal adjuster receives the first control signal and generates a second and a third control signal according to the first control signal. The voltage level of the third control signal is higher than that of the second control signal and the voltage level of the second control signal is higher than that of the first control signal. The plurality of delay cells are ring-connected and controlled by the first, the second, and the third control signals to generate the oscillation signal. Each delay cell includes three sets of current generation transistors. The three sets of current generation transistors are separately controlled by the three different control signals.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: November 18, 2014
    Assignee: Via Technologies, Inc.
    Inventor: Yeong-Sheng Lee
  • Patent number: 8836382
    Abstract: A driving circuit is provided. The driving circuit has: a level shifter configured to receive a reference voltage and an input signal at a first voltage to generate a second voltage; an differential amplifier, coupled to the level shifter, configured to receive the second voltage and an output signal to provide an operating voltage, wherein the differential amplifier is supplied by a first power source at a third voltage; and an output stage, coupled to the differential amplifier, configured to receive the input signal and the operating voltage for switching the output signal, wherein the first voltage is smaller than the third voltage, and the output signal has a fourth voltage between the first voltage and the third voltage.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: September 16, 2014
    Assignee: Via Technologies, Inc.
    Inventor: Yeong-Sheng Lee