Patents by Inventor Yeong-Wei A. Wu

Yeong-Wei A. Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7260026
    Abstract: Time-of-day tracking with INS input is described. In one embodiment, a range rate and a range acceleration is generated from inertial navigation system data received from a moveable platform (e.g. an airborne platform). A time and frequency estimation filter receives the range rate, the range acceleration and a timing-based error signal from a time discriminator, and can then generate a time-of-day correction signal and a frequency correction signal. A time-of-day generator receives the time-of-day correction signal and generates a time-of-day correction, and a clock frequency generator receives the frequency correction signal and generates a frequency correction. The time discriminator receives a satellite synchronization signal from a satellite, the time-of-day correction from the time-of-day generator, and the frequency correction from the clock frequency generator.
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: August 21, 2007
    Assignee: The Boeing Company
    Inventor: Yeong-wei A. Wu
  • Publication number: 20070150128
    Abstract: A method and apparatus for reducing centroiding error of a star sensor having a plurality of pixels is disclosed. The method comprises the steps of computing a star sensor angular slew rate of ? pixels per star sensor integration period ?, collecting star sensor data while slewing the star sensor according to the selected star sensor angular slew rate ?, and filtering the collected star sensor data according to a frequency determined by the selected star sensor angular slew rate.
    Type: Application
    Filed: February 23, 2005
    Publication date: June 28, 2007
    Inventors: Richard Fowell, Yeong-Wei Wu
  • Patent number: 7228231
    Abstract: A vehicle (12) including a control system (18) is used for controlling vehicle attitude or angular velocity (38). The processor (24) is coupled to a star sensor or tracker (22) and a memory (30) that may include a star catalog (32), and an exclusion list (36). The exclusion list (36), a list of stars to be temporarily excluded from consideration when determining attitude or angular velocity or relative alignment of star sensors or trackers, is calculated on board. Such a calculation prevents the necessity for a costly, periodic, ground calculation and upload of such data. By manipulating the star catalog, or sub-catalogs derived from said catalog, based upon the exclusion list (36), measurements of such excluded stars are prevented from corrupting the attitude or angular velocity or alignment estimates formulated on board. The system uses multiple stayout zones for excluding stars from the exclusion list.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: June 5, 2007
    Assignee: The Boeing Company
    Inventors: David D. Needelman, Richard A. Fowell, Peter C. Lai, Yeong-Wei A. Wu, Rongsheng Li
  • Patent number: 7219014
    Abstract: A vehicle (12) including a control system (18) is used for controlling vehicle attitude or angular velocity (38). The processor (24) is coupled to a star sensor or tracker (22) and a memory (30) that may include a star catalog (32), and an exclusion list (36). The exclusion list (36), a list of stars to be temporarily excluded from consideration when determining attitude or angular velocity or relative alignment of star sensors or trackers, is calculated on-board. Such a calculation prevents the necessity for a costly, periodic, ground calculation and upload of such data. By manipulating the star catalog, or sub-catalogs derived from said catalog, based upon the exclusion list (36), measurements of such excluded stars are prevented from corrupting the attitude or angular velocity or alignment estimates formulated on board.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: May 15, 2007
    Assignee: The Boeing Company
    Inventors: David D. Needelman, Rongsheng Li, Richard A. Fowell, Peter C. Lai, Yeong-Wei A. Wu, Bruce N. Eyerly, Jonathan French
  • Patent number: 7136752
    Abstract: A system (18) includes: a) A vehicle (12) includes an attitude or angular velocity control system (38), a plurality of star trackers or star sensors (22) each having a field of view (28); b) a memory (30) having a star catalog (32), an allocated area for a star pair catalog (58) and a reference table (56) stored therein; and c) a processor (24) coupled to the attitude or angular velocity control system (38), the star trackers or star sensors (22), and the memory (30). The processor (24) populates the star pair catalog (58), using the method described herein. The processor (24) then periodically determines the vehicle inertial attitude or angular velocity or sensor alignment, based, in part, on the star pair catalog (58) and reference table (56). The novel ability of the software to autonomously populate the star pair catalog (58) allows users to avoid uploading a large amount of data, and the problems associated with such an upload.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: November 14, 2006
    Assignee: The Boeing Company
    Inventors: David D. Needelman, Rongsheng Li, Richard A. Fowell, Peter C. Lai, Yeong-Wei A. Wu
  • Patent number: 7124001
    Abstract: A method and apparatus for estimating a slave payload attitude is disclosed. The method includes accepting a plurality of slave payload attitude measurements, deriving a model of the relative attitude of the slave payload and a master payload attitude at least in part from the plurality of slave attitude measurements, predicting the relative attitude between the slave payload attitude and the master payload attitude using the derived model, and estimating the relative attitude between the slave payload attitude and the master payload attitude at least in part from the predicted relative attitude between the slave payload attitude and the master payload attitude. Furthermore, the absolute attitude of the slave payload is computed using the relative attitude and the master payload attitude.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: October 17, 2006
    Assignee: The Boeing Company
    Inventors: Rongsheng Li, Hanching Grant Wang, Yeong-Wei A. Wu
  • Publication number: 20060149474
    Abstract: A method of estimating the alignment of a star sensor (20) for a vehicle (12) includes generating star tracker data. A vehicle attitude and a star sensor attitude are determined in response to the star tracker data. A current alignment sample is generated in response to the vehicle attitude and the star sensor attitude. A current refined estimate alignment signal is generated in response to the current alignment sample and a previously refined estimate alignment signal via a vehicle on-board filter (38).
    Type: Application
    Filed: January 3, 2005
    Publication date: July 6, 2006
    Inventors: David Needelman, Rongsheng Li, Yeong-Wei Wu
  • Patent number: 7062363
    Abstract: A method and apparatus for refining a spacecraft state estimate, such as an attitude estimate or an angular velocity estimate, is disclosed. The method computes a plurality equations using residuals describing the difference between observed star positions and predicted positions based on inertial measurements, and solves those equations to generate refined estimates of the spacecraft state estimates.
    Type: Grant
    Filed: September 21, 2004
    Date of Patent: June 13, 2006
    Assignee: The Boeing Company
    Inventors: David D. Needelman, Rongsheng Li, Yeong-Wei A. Wu
  • Publication number: 20060097108
    Abstract: In accordance with an embodiment of the present invention, a resolver system has at least one resolver and at least one amplifier in electrical communication with each resolver. A reference circuit is in electrical communication with the amplifiers. The reference circuit provides reference signals to the amplifiers. A non-linearity calibration and compensation circuit in communication with each amplifier uses the amplified reference signals to provide scale factors, so as to enhance a precision of the resolver system.
    Type: Application
    Filed: October 13, 2004
    Publication date: May 11, 2006
    Inventors: Ketao Liu, Yeong-Wei Wu, Jeffrey Lee
  • Publication number: 20050246072
    Abstract: A vehicle (12) including a control system (18) is used for controlling vehicle attitude or angular velocity (38). The processor (24) is coupled to a star sensor or tracker (22) and a memory (30) that may include a star catalog (32), and an exclusion list (36). The exclusion list (36), a list of stars to be temporarily excluded from consideration when determining attitude or angular velocity or relative alignment of star sensors or trackers, is calculated on-board. Such a calculation prevents the necessity for a costly, periodic, ground calculation and upload of such data. By manipulating the star catalog, or sub-catalogs derived from said catalog, based upon the exclusion list (36), measurements of such excluded stars are prevented from corrupting the attitude or angular velocity or alignment estimates formulated on board.
    Type: Application
    Filed: April 29, 2004
    Publication date: November 3, 2005
    Applicant: THE BOEING COMPANY
    Inventors: David Needelman, Rongsheng Li, Richard Fowell, Peter Lai, Yeong-Wei Wu, Bruce Eyerly, Jonathan French
  • Publication number: 20050246073
    Abstract: A vehicle (12) including a control system (18) is used for controlling vehicle attitude or angular velocity (38). The processor (24) is coupled to a star sensor or tracker (22) and a memory (30) that may include a star catalog (32), and an exclusion list (36). The exclusion list (36), a list of stars to be temporarily excluded from consideration when determining attitude or angular velocity or relative alignment of star sensors or trackers, is calculated on board. Such a calculation prevents the necessity for a costly, periodic, ground calculation and upload of such data. By manipulating the star catalog, or sub-catalogs derived from said catalog, based upon the exclusion list (36), measurements of such excluded stars are prevented from corrupting the attitude or angular velocity or alignment estimates formulated on board. The system uses multiple stayout zones for excluding stars from the exclusion list.
    Type: Application
    Filed: April 29, 2004
    Publication date: November 3, 2005
    Applicant: THE BOEING COMPANY
    Inventors: David Needelman, Richard Fowell, Peter Lai, Yeong-Wei Wu, Rongsheng Li
  • Publication number: 20050154529
    Abstract: A system (18) includes: a) A vehicle (12) includes an attitude or angular velocity control system (38), a plurality of star trackers or star sensors (22) each having a field of view (28); b) a memory (30) having a star catalog (32), an allocated area for a star pair catalog (58) and a reference table (56) stored therein; and c) a processor (24) coupled to the attitude or angular velocity control system (38), the star trackers or star sensors (22), and the memory (30). The processor (24) populates the star pair catalog (58), using the method described herein. The processor (24) then periodically determines the vehicle inertial attitude or angular velocity or sensor alignment, based, in part, on the star pair catalog (58) and reference table (56). The novel ability of the software to autonomously populate the star pair catalog (58) allows users to avoid uploading a large amount of data, and the problems associated with such an upload.
    Type: Application
    Filed: June 24, 2004
    Publication date: July 14, 2005
    Applicant: THE BOEING COMPANY
    Inventors: David Needelman, Rongsheng Li, Richard Fowell, Peter Lai, Yeong-Wei Wu
  • Publication number: 20050154528
    Abstract: A system (18) includes: a) A vehicle (12) includes an attitude or angular velocity control system (38), a plurality of star trackers or star sensors (22) each having a field of view (28); b) a memory (30) having a star catalog (32), a star pair catalog (58) and a reference table (56) stored therein; and c) a processor (24) coupled to the attitude or angular velocity control system (38), the star trackers or star sensors (22), and the memory (30). The processor (24) determines the vehicle inertial attitude or angular velocity or sensor alignment, based, in part, on the star pair catalog (58) and reference table (56). The design of the star pair catalog (58) and reference table (56) is suitable for rapid determination of attitude or angular velocity or sensor alignment, and an efficient use of memory.
    Type: Application
    Filed: June 24, 2004
    Publication date: July 14, 2005
    Applicant: THE BOEING COMPANY
    Inventors: James Alstad, David Needelman, Rongsheng Li, Richard Fowell, Peter Lai, Yeong-Wei Wu
  • Publication number: 20050071055
    Abstract: A method and apparatus for refining a spacecraft state estimate, such as an attitude estimate or an angular velocity estimate, is disclosed. The method computes a plurality equations using residuals describing the difference between observed star positions and predicted positions based on inertial measurements, and solves those equations to generate refined estimates of the spacecraft state estimates.
    Type: Application
    Filed: September 21, 2004
    Publication date: March 31, 2005
    Inventors: David Needelman, Rongsheng Li, Yeong-Wei Wu
  • Patent number: 6863244
    Abstract: A method, apparatus, article of manufacture, and a memory structure for compensating for optical sensor data corrupted by angular acceleration is disclosed. The method comprises the steps of determining an angular acceleration of the optical sensor and modifying the optical sensor data according to the determined angular acceleration of the optical sensor. The apparatus comprises a sensor for determining an angular acceleration of the optical sensor and a navigation system for modifying the optical sensor data according to the determined angular acceleration of the optical sensor.
    Type: Grant
    Filed: February 7, 2003
    Date of Patent: March 8, 2005
    Assignee: The Boeing Company
    Inventors: Richard A. Fowell, Salma I. Saeed, Rongsheng Li, Yeong-Wei Wu
  • Publication number: 20050010337
    Abstract: A method and apparatus for estimating a slave payload attitude is disclosed. The method comprises the steps of accepting a plurality of slave payload attitude measurements, deriving a model of the relative attitude of the slave payload and a master payload attitude at least in part from the plurality of slave attitude measurements, predicting the relative attitude between the slave payload attitude and the master payload attitude using the derived model, and estimating the relative attitude between the slave payload attitude and the master payload attitude at least in part from the predicted relative attitude between the slave payload attitude and the master payload attitude. Furthermore, the absolute attitude of the slave payload is computed using the relative attitude and the master payload attitude.
    Type: Application
    Filed: June 25, 2004
    Publication date: January 13, 2005
    Inventors: Rongsheng Li, Hanching Wang, Yeong-Wei Wu
  • Patent number: 6825806
    Abstract: Methods and structures are provided for reducing pointing errors &zgr; of satellite antennas and for generating broad field-of-view satellite attitude acquisition patterns. In one method embodiment, satellite transmit beams have estimated pointing attitudes &bgr; and are transmitted to overlap on a ground-based receiving terminal which has a known terminal location &lgr; and which measures received signal strengths &agr;. Pointing errors &zgr; of the transmit beams are then determined from the estimated pointing attitudes &bgr;, the terminal location &lgr; and the signal strengths &agr; and the pointing errors &zgr; are subsequently reduced by revising the pointing attitudes &bgr;. Other method embodiments utilize known signal-strength functions and antenna signals with known signal parameters such as frequencies and/or modulations.
    Type: Grant
    Filed: June 3, 2002
    Date of Patent: November 30, 2004
    Assignee: The Boeing Company
    Inventors: Ketao Liu, Richard Fowell, Yeong-Wei A. Wu, Rongsheng Li
  • Publication number: 20040148068
    Abstract: A method, apparatus, article of manufacture, and a memory structure for compensating for optical sensor data corrupted by angular acceleration is disclosed. The method comprises the steps of determining an angular acceleration of the optical sensor and modifying the optical sensor data according to the determined angular acceleration of the optical sensor. The apparatus comprises a sensor for determining an angular acceleration of the optical sensor and a navigation system for modifying the optical sensor data according to the determined angular acceleration of the optical sensor.
    Type: Application
    Filed: February 7, 2003
    Publication date: July 29, 2004
    Inventors: Richard A. Fowell, Salma I. Saeed, Rongsheng Li, Yeong-Wei Wu
  • Patent number: 6766227
    Abstract: Attitude acquisition methods and systems are provided which reduce the time generally required to acquire spacecraft attitude estimates and enhance the probability of realizing such estimates. The methods and systems receive, over a time span &Dgr;t, successive frames of star-sensor signals that correspond to successive stellar fields-of-view, estimate spacecraft rotation &Dgr;r throughout at least a portion of the time span &Dgr;t, and, in response to the spacecraft rotation &Dgr;r, process the star-sensor signals into a processed set of star-sensor signals that denote star positions across an expanded field-of-view that exceeds any of the successive fields-of-view. The expanded field-of-view facilitates identification of the stars that generated the processed set of star-sensor signals to thereby acquire an initial attitude estimate.
    Type: Grant
    Filed: November 19, 2002
    Date of Patent: July 20, 2004
    Assignee: The Boeing Company
    Inventors: David D. Needelman, Yeong-Wei A. Wu, Rongsheng Li
  • Publication number: 20040098177
    Abstract: Attitude acquisition methods and systems are provided which reduce the time generally required to acquire spacecraft attitude estimates and enhance the probability of realizing such estimates. The methods and systems receive, over a time span &Dgr;t, successive frames of star-sensor signals that correspond to successive stellar fields-of-view, estimate spacecraft rotation &Dgr;r throughout at least a portion of the time span &Dgr;t, and, in response to the spacecraft rotation &Dgr;r, process the star-sensor signals into a processed set of star-sensor signals that denote star positions across an expanded field-of-view that exceeds any of the successive fields-of-view. The expanded field-of-view facilitates identification of the stars that generated the processed set of star-sensor signals to thereby acquire an initial attitude estimate.
    Type: Application
    Filed: November 19, 2002
    Publication date: May 20, 2004
    Applicant: The Boeing Company
    Inventors: David D. Needelman, Yeong-Wei A. Wu, Rongsheng Li