Patents by Inventor Yi-Chun Chang

Yi-Chun Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240162308
    Abstract: The present disclosure provides a semiconductor structure with having a source/drain feature with a central cavity, and a source/drain contact feature formed in central cavity of the source/drain region, wherein the source/drain contact feature is nearly wrapped around by the source/drain region. The source/drain contact feature may extend to a lower most of a plurality semiconductor layers.
    Type: Application
    Filed: February 9, 2023
    Publication date: May 16, 2024
    Inventors: Pin Chun SHEN, Che Chia CHANG, Li-Ying WU, Jen-Hsiang LU, Wen-Chiang HONG, Chun-Wing YEUNG, Ta-Chun LIN, Chun-Sheng LIANG, Shih-Hsun CHANG, Chih-Hao CHANG, Yi-Hsien CHEN
  • Patent number: 11983475
    Abstract: A semiconductor device includes: M*1st conductors in a first layer of metallization (M*1st layer) and being aligned correspondingly along different corresponding ones of alpha tracks and representing corresponding inputs of a cell region in the semiconductor device; and M*2nd conductors in a second layer of metallization (M*2nd layer) aligned correspondingly along beta tracks, and the M*2nd conductors including at least one power grid (PG) segment and one or more of an output pin or a routing segment; and each of first and second ones of the input pins having a length sufficient to accommodate at most two access points; each of the access points of the first and second input pins being aligned to a corresponding different one of first to fourth beta tracks; and the PG segment being aligned with one of the first to fourth beta tracks.
    Type: Grant
    Filed: February 7, 2023
    Date of Patent: May 14, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Pin-Dai Sue, Po-Hsiang Huang, Fong-Yuan Chang, Chi-Yu Lu, Sheng-Hsiung Chen, Chin-Chou Liu, Lee-Chung Lu, Yen-Hung Lin, Li-Chun Tien, Yi-Kan Cheng
  • Publication number: 20240151743
    Abstract: The present disclosure is directed to a method of manufacturing one or more needles of a probe card by refining and processing a conductive body that extends from the probe card to form a respective tip at the end of the respective conductive body. Forming the respective tip of a respective needle includes removing respective portions from the end of the conductive body by flowing an electrolytic fluid between a conductive pattern structure and an end of the respective conductive body. Removing the respective portions with the flow of the electrons may be performed in multiple successive steps to form various needles with various sizes, shapes, and profiles (e.g., cylindrical, rectangular, triangular, trapezoidal, etc.).
    Type: Application
    Filed: February 7, 2023
    Publication date: May 9, 2024
    Inventors: Ting-Yu CHIU, Yi-Neng CHANG, Wen-Chun TU, Te-Kun LIN, Chien Fang HUANG
  • Publication number: 20240147606
    Abstract: An electronic device includes a first substrate structure, multiple electronic elements and a second substrate structure. The first substrate structure includes a first substrate. The electronic elements are disposed on the first substrate. The second substrate structure is coupled to the first substrate structure. The second substrate structure includes a second substrate, a protection circuit, a driving circuit and a bonding pad. The protection circuit is disposed on the second substrate. The driving circuit is disposed on the second substrate and configured to drive at least a part of the electronic elements. The bonding pad is disposed on the second substrate. The protection circuit is respectively coupled to the bonding pad and the driving circuit. The electronic device may reduce the damage caused by electrostatic discharge or reduce the impact of the bonding process of the bonding pad on signal conduction.
    Type: Application
    Filed: September 14, 2023
    Publication date: May 2, 2024
    Applicant: Innolux Corporation
    Inventors: Mu-Fan Chang, Yi-Hua Hsu, Hung-Sheng Liao, Min-Hsin Lo, Ming-Chun Tseng, Ker-Yih Kao
  • Publication number: 20240140782
    Abstract: The present disclosure provides a semiconductor device. The semiconductor device includes a first device and a second device disposed adjacent to the first device; a conductive pillar disposed adjacent to the first device or the second device; a molding surrounding the first device, the second device and the conductive pillar; and a redistribution layer (RDL) over the first device, the second device, the molding and the conductive pillar, wherein the RDL electrically connects the first device to the second device and includes an opening penetrating the RDL and exposing a sensing area over the first device.
    Type: Application
    Filed: January 5, 2024
    Publication date: May 2, 2024
    Inventors: PO CHEN YEH, YI-HSIEN CHANG, FU-CHUN HUANG, CHING-HUI LIN, CHIAHUNG LIU, SHIH-FEN HUANG, CHUN-REN CHENG
  • Publication number: 20240136463
    Abstract: This disclosure discloses an optical sensing device. The device includes a carrier body; a first light-emitting device disposed on the carrier body; and a light-receiving device including a group III-V semiconductor material disposed on the carrier body, including a light-receiving surface having an area, wherein the light-receiving device is capable of receiving a first received wavelength having a largest external quantum efficiency so the ratio of the largest external quantum efficiency to the area is ?13.
    Type: Application
    Filed: December 20, 2023
    Publication date: April 25, 2024
    Applicant: EPISTAR CORPORATION
    Inventors: Yi-Chieh LIN, Shiuan-Leh LIN, Yung-Fu CHANG, Shih-Chang LEE, Chia-Liang HSU, Yi HSIAO, Wen-Luh LIAO, Hong-Chi SHIH, Mei-Chun LIU
  • Publication number: 20240137875
    Abstract: A method for adjusting time-averaged (TA) parameters of a transmitting (TX) power of a radio module includes: obtaining at least one message of the at least one other radio module or at least one message of the radio module; determining a scenario of the TX power of the radio module according to the at least one message of the at least one other radio module or the at least one message of the radio module; determining whether the scenario is different from a predetermined scenario of the TX power of the radio module; and in response to the scenario being different from the predetermined scenario, adjusting the TA parameters according to the scenario.
    Type: Application
    Filed: October 1, 2023
    Publication date: April 25, 2024
    Applicant: MEDIATEK INC.
    Inventors: Yi-Ying Huang, Yi-Hsuan Lin, Han-Chun Chang
  • Patent number: 11967622
    Abstract: Embodiments provide a dielectric inter block disposed in a metallic region of a conductive line or source/drain contact. A first and second conductive structure over the metallic region may extend into the metallic region on either side of the inter block. The inter block can prevent etchant or cleaning solution from contacting an interface between the first conductive structure and the metallic region.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: April 23, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Te-Chih Hsiung, Jyun-De Wu, Yi-Chen Wang, Yi-Chun Chang, Yuan-Tien Tu
  • Patent number: 11961893
    Abstract: Improved conductive contacts, methods for forming the same, and semiconductor devices including the same are disclosed. In an embodiment, a semiconductor device includes a first interlayer dielectric (ILD) layer over a transistor structure; a first contact extending through the first ILD layer, the first contact being electrically coupled with a first source/drain region of the transistor structure, a top surface of the first contact being convex, and the top surface of the first contact being disposed below a top surface of the first ILD layer; a second ILD layer over the first ILD layer and the first contact; and a second contact extending through the second ILD layer, the second contact being electrically coupled with the first contact.
    Type: Grant
    Filed: June 18, 2021
    Date of Patent: April 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Te-Chih Hsiung, Jyun-De Wu, Yi-Chen Wang, Yi-Chun Chang, Yuan-Tien Tu
  • Publication number: 20240115616
    Abstract: The present disclosure provides a method for treating liver cirrhosis by using a composition including mesenchymal stem cells, extracellular vesicles produced by the mesenchymal stem cells, and growth factors. The composition of the present disclosure achieves the effect of treating liver cirrhosis through various efficacy experiments.
    Type: Application
    Filed: October 4, 2023
    Publication date: April 11, 2024
    Inventors: Po-Cheng Lin, Pi-Chun Huang, Zih-Han Hong, Ming-Hsi Chuang, Yi-Chun Lin, Chia-Hsin Lee, Chun-Hung Chen, Chao-Liang Chang, Kai-Ling Zhang
  • Publication number: 20240113112
    Abstract: Methods of cutting gate structures and fins, and structures formed thereby, are described. In an embodiment, a substrate includes first and second fins and an isolation region. The first and second fins extend longitudinally parallel, with the isolation region disposed therebetween. A gate structure includes a conformal gate dielectric over the first fin and a gate electrode over the conformal gate dielectric. A first insulating fill structure abuts the gate structure and extends vertically from a level of an upper surface of the gate structure to at least a surface of the isolation region. No portion of the conformal gate dielectric extends vertically between the first insulating fill structure and the gate electrode. A second insulating fill structure abuts the first insulating fill structure and an end sidewall of the second fin. The first insulating fill structure is disposed laterally between the gate structure and the second insulating fill structure.
    Type: Application
    Filed: December 1, 2023
    Publication date: April 4, 2024
    Inventors: Ryan Chia-Jen Chen, Cheng-Chung Chang, Shao-Hua Hsu, Yu-Hsien Lin, Ming-Ching Chang, Li-Wei Yin, Tzu-Wen Pan, Yi-Chun Chen
  • Patent number: 11944970
    Abstract: A microfluidic detection unit comprises at least one fluid injection section, a fluid storage section and a detection section. Each fluid injection section defines a fluid outlet; the fluid storage section is in gas communication with the atmosphere and defines a fluid inlet; the detection section defines a first end in communication with the fluid outlet and a second end in communication with the fluid inlet. A height difference is defined between the fluid outlet and the fluid inlet along the direction of gravity. When a first fluid is injected from the at least one fluid injection section, the first fluid is driven by gravity to pass through the detection section and accumulate to form a droplet at the fluid inlet, such that a state of fluid pressure equilibrium of the first fluid is established.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: April 2, 2024
    Assignees: INSTANT NANOBIOSENSORS, INC., INSTANT NANOBIOSENSORS CO., LTD.
    Inventors: Yu-Chung Huang, Yi-Li Sun, Ting-Chou Chang, Jhy-Wen Wu, Nan-Kuang Yao, Lai-Kwan Chau, Shau-Chun Wang, Ying Ting Chen
  • Publication number: 20240079409
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a substrate having a first fin structure. The semiconductor device structure includes a first source/drain structure over the first fin structure. The semiconductor device structure includes a first dielectric layer over the first source/drain structure and the substrate. The semiconductor device structure includes a first conductive contact structure in the first dielectric layer and over the first source/drain structure. The semiconductor device structure includes a second dielectric layer over the first dielectric layer and the first conductive contact structure. The semiconductor device structure includes a first conductive via structure passing through the second dielectric layer and connected to the first conductive contact structure. A first width direction of the first conductive contact structure is substantially parallel to a second width direction of the first conductive via structure.
    Type: Application
    Filed: November 6, 2023
    Publication date: March 7, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jyun-De WU, Te-Chih HSIUNG, Yi-Chun CHANG, Yi-Chen WANG, Yuan-Tien TU, Peng WANG, Huan-Just LIN
  • Publication number: 20240077479
    Abstract: A detection system and method for the migrating cell is provided. The system is configured to detect a migrating cell combined with an immunomagnetic bead. The system includes a platform, a microchannel, a magnetic field source, a coherent light source and an optical sensing module. The microchannel is configured to allow the migrating cell to flow in it along a flow direction. The magnetic field source is configured to provide magnetic force to the migrating cell combined with the immunomagnetic bead. The magnetic force includes at least one magnetic force component and the magnetic force component is opposite to the flow direction of the microchannel. The coherent light source is configured to provide the microchannel with the coherent light. The optical sensing module is configured to receive the interference light caused by the coherent light being reflected by the sample inside the microchannel.
    Type: Application
    Filed: August 10, 2023
    Publication date: March 7, 2024
    Applicant: DeepBrain Tech. Inc
    Inventors: Han-Lin Wang, Chia-Wei Chen, Yao-Wen Liang, Ting-Chun Lin, Yun-Ting Kuo, You-Yin Chen, Yu-Chun Lo, Ssu-Ju Li, Ching-Wen Chang, Yi-Chen Lin
  • Publication number: 20240071504
    Abstract: A memory device is provided, including a memory array, a driver circuit, and recover circuit. The memory array includes multiple memory cells. Each memory cell is coupled to a control line, a data line, and a source line and, during a normal operation, is configured to receive first and second voltage signals. The driver circuit is configured to output at least one of the first voltage signal or the second voltage signal to the memory cells. The recover circuit is configured to output, during a recover operation, a third voltage signal, through the driver circuit to at least one of the memory cells. The third voltage signal is configured to have a first voltage level that is higher than a highest level of the first voltage signal or the second voltage signal, or lower than a lowest level of the first voltage signal or the second voltage signal.
    Type: Application
    Filed: August 30, 2022
    Publication date: February 29, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Pei-Chun LIAO, Yu-Kai CHANG, Yi-Ching LIU, Yu-Ming LIN, Yih WANG, Chieh LEE
  • Publication number: 20230361185
    Abstract: A device comprises a source/drain contact over a source/drain region of a transistor, an etch stop layer above the source/drain contact, an interlayer dielectric (ILD) layer above the etch stop layer, and a source/drain via extending through the ILD layer and the etch stop layer to the source/drain contact. The etch stop layer has an oxidized region in contact with the source/drain via and separated from the source/drain contact.
    Type: Application
    Filed: July 14, 2023
    Publication date: November 9, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Te-Chih HSIUNG, Yi-Chun CHANG, Yi-Chen WANG, Yuan-Tien TU, Huan-Just LIN, Jyun-De WU
  • Patent number: 11810919
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a substrate having a first fin structure. The semiconductor device structure includes a first source/drain structure over the first fin structure. The semiconductor device structure includes a first dielectric layer over the first source/drain structure and the substrate. The semiconductor device structure includes a first conductive contact structure in the first dielectric layer and over the first source/drain structure. The semiconductor device structure includes a second dielectric layer over the first dielectric layer and the first conductive contact structure. The semiconductor device structure includes a first conductive via structure passing through the second dielectric layer and connected to the first conductive contact structure. The first conductive via structure has a first substantially strip shape in a top view of the first conductive via structure.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: November 7, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jyun-De Wu, Te-Chih Hsiung, Yi-Chun Chang, Yi-Chen Wang, Yuan-Tien Tu, Peng Wang, Huan-Just Lin
  • Publication number: 20230298934
    Abstract: A semiconductor device includes a gate structure, source/drain regions, source/drain contacts, a gate dielectric cap, an etch stop layer, and a gate contact. The gate structure is over a substrate. The source/drain regions are at opposite sides of the gate structure. The source/drain contacts are over the source/drain regions, respectively. The gate dielectric cap is over the gate structure and has opposite sidewalls interfacing the source/drain contacts.
    Type: Application
    Filed: April 20, 2023
    Publication date: September 21, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Te-Chih HSIUNG, Yi-Chun CHANG, Jyun-De WU, Yi-Chen WANG, Yuan-Tien TU, Huan-Just LIN
  • Patent number: 11749732
    Abstract: A method comprises forming a source/drain contact over a source/drain region; forming an etch stop layer over the source/drain contact and an interlayer dielectric (ILD) layer over the etch stop layer; performing a first etching process to form a via opening extending through the ILD layer and a recess in the etch stop layer; oxidizing a sidewall of the recess in the etch stop layer; after oxidizing the sidewall of the recess in the etch stop layer, performing a second etching process to extend the via opening down to the source/drain contact; and after performing the second etching process, forming a source/drain via in the via opening.
    Type: Grant
    Filed: February 6, 2021
    Date of Patent: September 5, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Te-Chih Hsiung, Yi-Chun Chang, Yi-Chen Wang, Yuan-Tien Tu, Huan-Just Lin, Jyun-De Wu
  • Patent number: 11664272
    Abstract: A method comprises forming a gate structure over a semiconductor substrate; forming an etch stop layer over the gate structure and an ILD layer over the etch stop layer; performing a first etching process to form a gate contact opening extending through the ILD layer into the etch stop layer, resulting in a sidewall of the etch stop layer being exposed in the gate contact opening; oxidizing the exposed sidewall of the etch stop layer; after oxidizing the exposed sidewall of the etch stop layer, performing a second etching process to deepen the gate contact opening; and forming a gate contact in the deepened gate contact opening.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: May 30, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Te-Chih Hsiung, Yi-Chun Chang, Jyun-De Wu, Yi-Chen Wang, Yuan-Tien Tu, Huan-Just Lin