Patents by Inventor Yi-Kuei WU

Yi-Kuei WU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11996435
    Abstract: An image sensor may include a polydimethylsiloxane (PDMS) layer that is subwavelength, hydrophobic, and/or antireflective. The PDMS layer may be fabricated to include a surface having a plurality of nanostructures (e.g., an array of convex protuberances and/or an array of concave recesses). The nanostructures may be formed through the use of a porous anodic aluminum oxide (AAO) template that uses a plurality of nanopores to form the array of convex protuberances and/or the array of concave recesses. The nanostructures may each have a respective width that is less than the wavelength of incident light that is to be collected by the image sensor to increase light absorption by increasing the angle of incidence for which the image sensor is capable of collecting incident light. This may increase the quantum efficiency of the image sensor and may increase the sensitivity of the image sensor.
    Type: Grant
    Filed: October 28, 2022
    Date of Patent: May 28, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Ming Lin, Chen-Chi Wu, Chen-Kuei Chung
  • Patent number: 11971574
    Abstract: Configurations for an interferometric device used for multiplexing and de-multiplexing light are disclosed. The interferometric device may include a first input waveguide, a second input waveguide, an interferometric waveguide, and an output waveguide. A fundamental mode of light may be launched into the first and second input waveguides, and the interferometric waveguide may receive the fundamental mode and generate a higher order mode of light, where the two modes of light may be superimposed while propagating through the interferometric waveguide. The two modes of light may be received at an output waveguide that collapses the two modes into a single mode. The light propagating through the interferometric device may be used for increasing optical power even though the wavelengths of light may be different from one another. Additionally, the interferometric device may reduce coherent noise.
    Type: Grant
    Filed: April 20, 2022
    Date of Patent: April 30, 2024
    Assignee: Apple Inc.
    Inventors: Yi-Kuei Wu, Lucia Gan
  • Publication number: 20240094592
    Abstract: Disclosed herein is an integrated photonics device including an on-chip wavelength stability monitor. The wavelength stability monitor may include one or more interferometric components, such as Mach-Zehnder interferometers and can be configured to select among the output signals from the interferometric components for monitoring the wavelength emitted by a corresponding photonic component, such as a light source. The selection may be based on a slope of the output signal and in some examples may correspond to a working zone at or around a wavelength or wavelength range. In some examples, the interferometric components can be configured with different phase differences such that the corresponding working zones have different wavelengths. In some examples, the slopes of the output signals may be weighted based on the steepness of the slope and all of the output signals may include information for wavelength locking the measured wavelength to the target wavelength.
    Type: Application
    Filed: December 1, 2023
    Publication date: March 21, 2024
    Inventors: Yi-Kuei Wu, Jason Pelc, Mark Alan Arbore, Thomas C. Greening, Matthew A. Terrel, Yongming Tu, Mohamed Mahmoud
  • Patent number: 11906778
    Abstract: Configurations for an optical splitter are disclosed. The optical splitter may include an input waveguide, a free propagation region, and an array of output waveguides. The input waveguide may be sufficiently narrow that the light in the free propagation region may diffract and provide the same optical intensity at far field angles across a wide wavelength range. The input waveguide may have a high V number in a vertical dimension and a low V number in a horizontal dimension. Because all of the wavelengths of light diffract at the same angle in the free propagation region, once the light reaches the output waveguides, the light may have similar optical power at each of the output waveguides. Additionally, the output waveguides may vary in width and spacing to mitigate the non-uniform optical power distribution of the phase front of light.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: February 20, 2024
    Assignee: Apple Inc.
    Inventors: Mark Alan Arbore, Yi-Kuei Wu
  • Patent number: 11886007
    Abstract: A waveguide structure and a method for splitting light is described. The method may include optically coupling a first waveguide and a second waveguide, where the optical coupling may be wavelength insensitive. The widths of the first and second waveguides may be non-adiabatically varying and the optical coupling may be asymmetric between the first and second waveguides. A gap between the first and second waveguides may also be varied non-adiabatically and the gap may depend on the widths of the first and second waveguides. The optical coupling between the first and second waveguides may also occur in the approximate wavelength range of 800 nanometers to 1700 nanometers.
    Type: Grant
    Filed: November 11, 2022
    Date of Patent: January 30, 2024
    Assignee: Apple Inc.
    Inventors: Yi-Kuei Wu, Yongming Tu, Alfredo Bismuto, Andrea Trita, Yangyang Liu
  • Patent number: 11835836
    Abstract: Disclosed herein is an integrated photonics device including an on-chip wavelength stability monitor. The wavelength stability monitor may include one or more interferometric components, such as Mach-Zehnder interferometers and can be configured to select among the output signals from the interferometric components for monitoring the wavelength emitted by a corresponding photonic component, such as a light source. The selection may be based on a slope of the output signal and in some examples may correspond to a working zone at or around a wavelength or wavelength range. In some examples, the interferometric components can be configured with different phase differences such that the corresponding working zones have different wavelengths. In some examples, the slopes of the output signals may be weighted based on the steepness of the slope and all of the output signals may include information for wavelength locking the measured wavelength to the target wavelength.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: December 5, 2023
    Assignee: Apple Inc.
    Inventors: Yi-Kuei Wu, Jason Pelc, Mark Alan Arbore, Thomas C. Greening, Matthew A. Terrel, Yongming Tu, Mohamed Mahmoud
  • Publication number: 20230110382
    Abstract: Configurations for an interferometric device used for multiplexing and de-multiplexing light are disclosed. The interferometric device may include a first input waveguide, a second input waveguide, an interferometric waveguide, and an output waveguide. A fundamental mode of light may be launched into the first and second input waveguides, and the interferometric waveguide may receive the fundamental mode and generate a higher order mode of light, where the two modes of light may be superimposed while propagating through the interferometric waveguide. The two modes of light may be received at an output waveguide that collapses the two modes into a single mode. The light propagating through the interferometric device may be used for increasing optical power even though the wavelengths of light may be different from one another. Additionally, the interferometric device may reduce coherent noise.
    Type: Application
    Filed: April 20, 2022
    Publication date: April 13, 2023
    Inventors: Yi-Kuei Wu, Lucia Gan
  • Publication number: 20230094833
    Abstract: Configurations for a light splitting device used for light splitting over an operating bandwidth of wavelengths are disclosed. The light splitting device may include a first coupler and a second coupler, where the first coupler has a first splitting power relationship and the second coupler has a second splitting power relationship and the first and second splitting power relationships are complementary to one another over the operating bandwidth of wavelengths. The light splitting device may further include a phase delay positioned between the first and second couplers. The phase delay may result in the output light having an approximately even optical power distribution across the operating bandwidth of wavelengths. In some embodiments, the first and second couplers may be directional couplers and, in other embodiments, the first and second couplers may be tapered couplers.
    Type: Application
    Filed: June 28, 2022
    Publication date: March 30, 2023
    Inventor: Yi-Kuei Wu
  • Publication number: 20230100317
    Abstract: Configurations for a modal interference device used for wavelength locking are disclosed. The modal interference device may be an interference device that includes an input waveguide, an interference waveguide, and an output waveguide. A fundamental mode of light may be launched into the input waveguide and the interference waveguide may receive the fundamental mode and generate a higher order mode of light, where the two modes of light may be superimposed while propagating through the interference waveguide. The two modes of light may be received at an output waveguide that collapses the two modes into a single mode and generates an output signal corresponding to the interference between the two modes of light. The output signal may be used to wavelength lock a measured wavelength to a target wavelength. The multiple output waveguides may produce output signals that have dead zones that do not align with one another for any wavelength in the wavelength range of interest.
    Type: Application
    Filed: September 15, 2022
    Publication date: March 30, 2023
    Inventors: Jason S. Pelc, Mark Alan Arbore, Yi-Kuei Wu
  • Publication number: 20230071329
    Abstract: A waveguide structure and a method for splitting light is described. The method may include optically coupling a first waveguide and a second waveguide, where the optical coupling may be wavelength insensitive. The widths of the first and second waveguides may be non-adiabatically varying and the optical coupling may be asymmetric between the first and second waveguides. A gap between the first and second waveguides may also be varied non-adiabatically and the gap may depend on the widths of the first and second waveguides. The optical coupling between the first and second waveguides may also occur in the approximate wavelength range of 800 nanometers to 1700 nanometers.
    Type: Application
    Filed: November 11, 2022
    Publication date: March 9, 2023
    Inventors: Yi-Kuei Wu, Yongming Tu, Alfredo Bismuto, Andrea Trita, Yangyang Liu
  • Publication number: 20230062578
    Abstract: Configurations for an optical device used for light splitting and wavelength locking are disclosed. The optical device may be a two by three coupler with a first waveguide coupled to a second waveguide, and a third waveguide coupled to the second waveguide. The first and third waveguides may receive input light and optically couple light to the second waveguide. The output signals of the first, second, and third waveguides may have a constant phase difference from one another over a broadband wavelength range, which may allow for phase unwrapping. By phase unwrapping the output signals over an FSR and performing further phase unwrapping over the broadband wavelength range, a continuous signal may be produced and used to sequentially lock each wavelength of light emitted by light sources over the broadband wavelength range.
    Type: Application
    Filed: May 27, 2022
    Publication date: March 2, 2023
    Inventors: Mohamed Mahmoud, Yi-Kuei Wu, Lucia Gan
  • Patent number: 11500154
    Abstract: A waveguide structure and a method for splitting light is described. The method may include optically coupling a first waveguide and a second waveguide, where the optical coupling may be wavelength insensitive. The widths of the first and second waveguides may be non-adiabatically varying and the optical coupling may be asymmetric between the first and second waveguides. A gap between the first and second waveguides may also be varied non-adiabatically and the gap may depend on the widths of the first and second waveguides. The optical coupling between the first and second waveguides may also occur in the approximate wavelength range of 800 nanometers to 1700 nanometers.
    Type: Grant
    Filed: October 18, 2020
    Date of Patent: November 15, 2022
    Inventors: Yi-Kuei Wu, Yongming Tu, Alfredo Bismuto, Andrea Trita, Yangyang Liu
  • Publication number: 20220099889
    Abstract: Configurations for an optical splitter are disclosed. The optical splitter may include an input waveguide, a free propagation region, and an array of output waveguides. The input waveguide may be sufficiently narrow that the light in the free propagation region may diffract and provide the same optical intensity at far field angles across a wide wavelength range. The input waveguide may have a high V number in a vertical dimension and a low V number in a horizontal dimension. Because all of the wavelengths of light diffract at the same angle in the free propagation region, once the light reaches the output waveguides, the light may have similar optical power at each of the output waveguides. Additionally, the output waveguides may vary in width and spacing to mitigate the non-uniform optical power distribution of the phase front of light.
    Type: Application
    Filed: September 20, 2021
    Publication date: March 31, 2022
    Inventors: Mark Alan Arbore, Yi-Kuei Wu
  • Publication number: 20220091333
    Abstract: Configurations for a one by four light splitting device are disclosed. The light splitting device may include a primary waveguide, a first coupling waveguide, and a second coupling waveguide. The primary waveguide may couple light from the primary waveguide into both the first and second coupling waveguides. Due to the manipulation of the coupling modes, a fundamental mode of light may be input and four fundamental modes of light may be output. In some examples, the primary waveguide may input a fundamental mode of light that may be converted into a first hybrid mode, which may be a four lobe mode. The first and second coupling waveguides may be tapered and separated by a gap such that the first hybrid mode may be converted into two second hybrid modes, which may then be converted back into four fundamental modes of output light.
    Type: Application
    Filed: August 20, 2021
    Publication date: March 24, 2022
    Inventor: Yi-Kuei Wu
  • Patent number: 9547107
    Abstract: Optical spectrum filtering devices displaying minimal angle dependence or angle insensitivity are provided. The filter comprises a localized plasmonic nanoresonator assembly having a metal material layer defining at least one nanogroove and a dielectric material disposed adjacent to the metal material layer. The dielectric material is disposed within the nanogroove(s). The localized plasmonic nanoresonator assembly is configured to funnel and absorb a portion of an electromagnetic spectrum in the at least one nanogroove via localized plasmonic resonance to generate a filtered output having a predetermined range of wavelengths that displays angle insensitivity. Thus, flexible, high efficiency angle independent color filters having very small diffraction limits are provided that are particularly suitable for use as pixels for various display devices or for use in anti-counterfeiting and cryptography applications.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: January 17, 2017
    Assignee: The Regents Of The University Of Michigan
    Inventors: Lingjie Jay Guo, Andrew E. Hollowell, Yi-Kuei Wu
  • Publication number: 20140268332
    Abstract: Optical spectrum filtering devices displaying minimal angle dependence or angle insensitivity are provided. The filter comprises a localized plasmonic nanoresonator assembly having a metal material layer defining at least one nanogroove and a dielectric material disposed adjacent to the metal material layer. The dielectric material is disposed within the nanogroove(s). The localized plasmonic nanoresonator assembly is configured to funnel and absorb a portion of an electromagnetic spectrum in the at least one nanogroove via localized plasmonic resonance to generate a filtered output having a predetermined range of wavelengths that displays angle insensitivity. Thus, flexible, high efficiency angle independent color filters having very small diffraction limits are provided that are particularly suitable for use as pixels for various display devices or for use in anti-counterfeiting and cryptography applications.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicants: SANDIA CORPORATION, THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Lingjie Jay GUO, Andrew E. HOLLOWELL, Yi-Kuei WU