Patents by Inventor Yi-Shao LIU

Yi-Shao LIU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9493347
    Abstract: A method of forming a semiconductor device includes depositing a light reflecting layer over a substrate. The method also includes forming a protection layer over the light reflecting layer. The method further includes forming an anti-reflective coating (ARC) layer over the protection layer. The method additionally includes forming an opening in the ARC layer, the protection layer and the light reflecting layer exposing the substrate. The method also includes removing the ARC layer in a wet solution comprising H2O2, the ARC layer being exposed to the H2O2 at a flow rate greater than about 10 standard cubic centimeters per minute (sccm).
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: November 15, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi-Hsien Chang, Chun-Ren Cheng, Yi-Shao Liu, Allen Timothy Chang, Ching-Ray Chen, Yeh-Tseng Li, Wen-Hsiang Lin
  • Publication number: 20160320335
    Abstract: A biological device includes a substrate, a gate electrode, and a sensing well. The substrate includes a source region, a drain region, a channel region, a body region, and a sensing region. The channel region is disposed between the source region and the drain region. The sensing region is at least disposed between the channel region and the body region. The gate electrode is at least disposed on or above the channel region of the substrate. The sensing well is at least disposed adjacent to the sensing region.
    Type: Application
    Filed: April 29, 2015
    Publication date: November 3, 2016
    Inventors: Ta-Chuan LIAO, Chien-Kuo YANG, Yi-Shao LIU, Tung-Tsun CHEN, Chan-Ching LIN, Jui-Cheng HUANG, Felix Ying-Kit TSUI, Jing-Hwang YANG
  • Publication number: 20160320337
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device includes a substrate, a transistor structure having a treated layer adjacent to the channel region, an isolation layer, and a dielectric layer in an opening of the isolation layer on the treated layer. The dielectric layer and the treated layer are disposed on opposite side of the transistor from a gate structure. The treated layer may be a lightly doped channel layer or a depleted layer.
    Type: Application
    Filed: July 11, 2016
    Publication date: November 3, 2016
    Inventors: Chun-Wen Cheng, Yi-Shao Liu, Fei-Lung Lai, Wei-Cheng Lin, Ta-Chuan Liao, Chien-Kuo Yang
  • Patent number: 9459234
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device may include a substrate; a gate structure disposed on a first surface of the substrate and an interface layer formed on the second surface of the substrate. The interface layer may allow for a receptor to be placed on the interface layer to detect the presence of a biomolecule or bio-entity.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: October 4, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd., (“TSMC”)
    Inventors: Alexander Kalnitsky, Yi-Shao Liu, Kai-Chih Liang, Chia-Hua Chu, Chun-Ren Cheng, Chun-Wen Cheng
  • Patent number: 9395326
    Abstract: The present disclosure provides a device, such as a FET sensing cell, which includes a first dielectric layer over a substrate, an active layer over the first dielectric layer, a source region in the active layer, a drain region in the active layer, a channel region in the active layer situated between the source region and the drain region, a sensing film over the channel region, a second dielectric layer over the active layer, wherein an opening is formed in the second dielectric layer and the sensing film is located within the opening, a first electrode located within the second dielectric layer and a fluidic gate region located over the second dielectric layer and extending into the opening. The present disclosure also provides a method for improving the sensitivity of a device by adjusting a sensing value.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: July 19, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Tung-Tsun Chen, Jui-Cheng Huang, Chin-Hua Wen, Chun-wen Cheng, Yi-Shao Liu
  • Patent number: 9389199
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device includes a substrate, a transistor structure having a treated layer adjacent to the channel region, an isolation layer, and a dielectric layer in an opening of the isolation layer on the treated layer. The dielectric layer and the treated layer are disposed on opposite side of the transistor from a gate structure. The treated layer may be a lightly doped channel layer or a depleted layer.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: July 12, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Wen Cheng, Yi-Shao Liu, Fei-Lung Lai, Wei-Cheng Lin, Ta-Chuan Liao, Chien-Kuo Yang
  • Patent number: 9376713
    Abstract: Provided are methods and devices for label-free detection of nucleic acids that are amplified by polymerase chain reaction. A solution containing the components necessary for a PCR is introduced to a microfluidic amplification chamber and an electric field applied to a confined region in which PCR occurs. PCR product generated in the confined region is detected by measuring an electrical parameter that is, for example, solution impedance. The devices and methods provided herein are used, for example, in assays to detect one or more pathogens or for point-of-care tests. In an aspect, the PCR product is confined to droplets and the assay relates to detecting an electrical parameter of a flowing droplet, thereby detecting PCR product without a label. In an aspect, the PCR occurs in the droplet.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: June 28, 2016
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Rashid Bashir, Yi-Shao Liu, Eric Salm, Woo-Jin Chang, Nicholas N. Watkins
  • Publication number: 20160074828
    Abstract: An integrated circuit includes a plurality of sensing pixels. Each sensing pixel of the plurality of sensing pixels includes a sensing film portion, a potential-sensing device configured to generate a first signal responsive to an electrical characteristic of the sensing film portion, a temperature-sensing device configured to generate a second signal responsive to a temperature of the sensing film portion, and one or more heating elements configured to adjust the temperature of the sensing film portion.
    Type: Application
    Filed: May 15, 2015
    Publication date: March 17, 2016
    Inventors: Tung-Tsun CHEN, Yi-Shao LIU, Jui-Cheng HUANG, Chin-Hua WEN, Felix Ying-Kit TSUI, Yung-Chow PENG
  • Publication number: 20160011144
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) device and methods of fabricating a BioFET and a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device includes a gate structure disposed on a first surface of a substrate and an interface layer formed on a second surface of the substrate. The substrate is thinned from the second surface to expose a channel region before forming the interface layer.
    Type: Application
    Filed: July 14, 2015
    Publication date: January 14, 2016
    Inventors: Yi-Shao Liu, Chun-Ren Cheng, Ching-Ray Chen, Yi-Hsien Chang, Fei-Lung Lai, Chun-Wen Cheng
  • Publication number: 20150330942
    Abstract: The present disclosure provides a biological field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device includes a plurality of micro wells having a sensing gate bottom and a number of stacked well portions. A bottom surface area of a well portion is different from a top surface area of a well portion directly below. The micro wells are formed by multiple etching operations through different materials, including a sacrificial plug, to expose the sensing gate without plasma induced damage.
    Type: Application
    Filed: July 27, 2015
    Publication date: November 19, 2015
    Inventors: Yi-Hsien Chang, Chun-Ren Cheng, Shih-Wei Lin, Yi-Shao Liu
  • Patent number: 9121820
    Abstract: The present disclosure relates to a top-down method of forming a nanowire structure extending between source and drain regions of a nanowire transistor device, and an associated apparatus. In some embodiments, the method provides a substrate having a device layer disposed over a first dielectric layer. The device layer has a source region and a drain region separated by a device material. The first dielectric layer has an embedded gate structure abutting the device layer. One or more masking layers are selectively formed over the device layer to define a nanowire structure. The device layer is then selectively etched according to the one or more masking layers to form a nanowire structure at a position between the source region and the drain region. By forming the nanowire structure through a masking and etch process, the nanowire structure is automatically connected to the source and drain regions.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: September 1, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Shao Liu, Fei-Lung Lai, Chun-Wen Cheng
  • Patent number: 9091647
    Abstract: The present disclosure provides a biological field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device includes a plurality of micro wells having a sensing gate bottom and a number of stacked well portions. A bottom surface area of a well portion is different from a top surface area of a well portion directly below. The micro wells are formed by multiple etching operations through different materials, including a sacrificial plug, to expose the sensing gate without plasma induced damage.
    Type: Grant
    Filed: September 8, 2012
    Date of Patent: July 28, 2015
    Inventors: Yi-Hsien Chang, Chun-Ren Cheng, Shih-Wei Lin, Yi-Shao Liu
  • Patent number: 9080969
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) device and methods of fabricating a BioFET and a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device includes a gate structure disposed on a first surface of a substrate and an interface layer formed on a second surface of the substrate. The substrate is thinned from the second surface to expose a channel region before forming the interface layer.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: July 14, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Shao Liu, Chun-Ren Cheng, Ching-Ray Chen, Yi-Hsien Chang, Fei-Lung Lai, Chun-Wen Cheng
  • Publication number: 20150160323
    Abstract: A device includes a first biosensor of a biosensor array; a second biosensor of a biosensor array; a readout circuit electrically connected to the biosensor array; a decoder electrically connected to the biosensor array; a voltage generator electrically connected to the biosensor array; and a decision system electrically connected to the voltage generator and the readout circuit.
    Type: Application
    Filed: December 11, 2013
    Publication date: June 11, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chin-Hua Wen, Jui-Cheng Huang, Yi-Shao Liu, Chun-Wen Cheng, Tung-Tsun Chen
  • Publication number: 20150139857
    Abstract: A biochip includes a substrate, where the substrate includes at least one hole extending from a first surface of the substrate to a second surface of the substrate opposite the first surface, and where the substrate comprises a microfluidic channel pattern. The biochip further includes a surface modification layer over the substrate. Additionally, the biochip includes a sensing wafer bonded to the substrate, where the sensing wafer has one or more modified surface patterns having different surface properties from each other.
    Type: Application
    Filed: January 23, 2015
    Publication date: May 21, 2015
    Inventors: Yi-Shao LIU, Chun-Wen CHENG, Chun-Ren CHENG
  • Patent number: 9034678
    Abstract: A BioMEMS microelectromechanical apparatus and for fabricating the same is disclosed. A substrate is provided with at least one signal conduit formed on the substrate. A sacrificial layer of sacrificial material may be deposited on the signal conduit and optionally patterned to remove sacrificial material from outside the packaging covered area. A bonding layer may be deposited on at least a portion of the signal conduit and on the sacrificial layer when included. The bonding layer may be planarized and patterned to form one or more cap bonding pads and define a packaging covered area. A cap may be bonded on the cap bonding pad to define a capped area and so that the signal conduit extends from outside the capped area to inside the capped area. Additionally, a test material such as a fluid may be provided within the capped area.
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: May 19, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Allen Timothy Chang, Yi-Shao Liu, Ching-Ray Chen, Chun-Ren Cheng
  • Publication number: 20150129936
    Abstract: A device includes a biosensor, a sensing circuit electrically connected to the biosensor, a quantizer electrically connected to the sensing circuit, a digital filter electrically connected to the quantizer, a selective window electrically connected to the digital filter, and a decision unit electrically connected to the selective window.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 14, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jui-Cheng Huang, Yi-Shao Liu, Chun-Wen Cheng, Tung-Tsun Chen, Chin-Hua Wen
  • Publication number: 20150125872
    Abstract: The present disclosure provides a device, such as a FET sensing cell, which includes a first dielectric layer over a substrate, an active layer over the first dielectric layer, a source region in the active layer, a drain region in the active layer, a channel region in the active layer situated between the source region and the drain region, a sensing film over the channel region, a second dielectric layer over the active layer, wherein an opening is formed in the second dielectric layer and the sensing film is located within the opening, a first electrode located within the second dielectric layer and a fluidic gate region located over the second dielectric layer and extending into the opening. The present disclosure also provides a method for improving the sensitivity of a device by adjusting a sensing value.
    Type: Application
    Filed: November 1, 2013
    Publication date: May 7, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Tung-Tsun Chen, Jui-Cheng Huang, Chin-Hua Wen, Chun-wen Cheng, Yi-Shao Liu
  • Publication number: 20150079704
    Abstract: The present disclosure relates to a micro-fluidic probe card that deposits a fluidic chemical onto a substrate with a minimal amount of fluidic chemical waste, and an associated method of operation. In some embodiments, the micro-fluidic probe card has a probe card body with a first side and a second side. A sealant element, which contacts a substrate, is connected to the second side of the probe card body in a manner that forms a cavity within an interior of the sealant element. A fluid inlet, which provides a fluid from a processing tool to the cavity, is a first conduit extending between the first side and the second side of the probe card body. A fluid outlet, which removes the fluid from the cavity, is a second conduit extending between the first side and the second side of the probe card body.
    Type: Application
    Filed: September 16, 2013
    Publication date: March 19, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Wen Cheng, Jung-Huei Peng, Yi-Shao Liu, Fei-Lung Lai, Shang-Ying Tsai
  • Publication number: 20150053925
    Abstract: The present disclosure relates to a top-down method of forming a nanowire structure extending between source and drain regions of a nanowire transistor device, and an associated apparatus. In some embodiments, the method provides a substrate having a device layer disposed over a first dielectric layer. The device layer has a source region and a drain region separated by a device material. The first dielectric layer has an embedded gate structure abutting the device layer. One or more masking layers are selectively formed over the device layer to define a nanowire structure. The device layer is then selectively etched according to the one or more masking layers to form a nanowire structure at a position between the source region and the drain region. By forming the nanowire structure through a masking and etch process, the nanowire structure is automatically connected to the source and drain regions.
    Type: Application
    Filed: August 23, 2013
    Publication date: February 26, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Shao Liu, Fei-Lung Lai, Chun-Wen Cheng