Patents by Inventor Yi-Wen Wu

Yi-Wen Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11990290
    Abstract: A detachable pushbutton structure includes a case seat which is formed with an internal receiving space for receiving a base seat and a linking member. The base seat has multiple contact legs. The linking member is drivable to control the respective contact legs to form different conducting states. A support seat connected with the linking member and has an internal penetrating hole. A light-emitting member is received in the penetrating hole and connected with the base seat. A connected section is disposed on an outer side of the support seat. A cap assembly can be tightly capped on the penetrating hole of the support seat. A pushbutton is capped on the cap assembly and has a connection section detachably connected with the connected section. A protective ring securely connected between an inner circumference of the receiving space and an outer circumference of the support seat.
    Type: Grant
    Filed: August 12, 2022
    Date of Patent: May 21, 2024
    Assignees: Switchlab Inc., Switchlab (Shanghai) Co., Ltd., Gaocheng Electronics Co., Ltd.
    Inventors: Chih-Yuan Wu, Chih-Hao Sung, Yi-Wen Qiu
  • Patent number: 11989005
    Abstract: A system performs adaptive thermal ceiling control at runtime. The system includes computing circuits and a thermal management module. When detecting a runtime condition change that affects power consumption in the system, the thermal management module determines an adjustment to the thermal ceiling of a computing circuit, and increases the thermal ceiling of the computing circuit according to the adjustment.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: May 21, 2024
    Assignee: MediaTek Inc.
    Inventors: Bo-Jr Huang, Jia-Wei Fang, Jia-Ming Chen, Ya-Ting Chang, Chien-Yuan Lai, Cheng-Yuh Wu, Yi-Pin Lin, Wen-Wen Hsieh, Min-Shu Wang
  • Publication number: 20240162833
    Abstract: A power supply unit supplies power to a load, and the power supply unit includes a power factor corrector, a DC conversion module, and an isolated conversion module. The power factor corrector is plugged into a first main circuit board and converts an AC power into a DC power. The DC conversion module is plugged into the first main circuit board and converts the DC power into a main power. The isolated conversion module includes a bus capacitor, the bus capacitor is coupled to the DC conversion module through a first power copper bar, and coupled to the power factor corrector through a second power copper bar. The first power copper bar and the second power copper bar are arranged on a side opposite to the first main circuit board, and are arranged in parallel with the first main circuit board.
    Type: Application
    Filed: November 13, 2023
    Publication date: May 16, 2024
    Inventors: Yi-Sheng CHANG, Cheng-Chan HSU, Chia-Wei CHU, Chun-Yu YANG, Deng-Cyun HUANG, Yi-Hsun CHIU, Chien-An LAI, Yu-Tai WANG, Chi-Shou HO, Zhi-Yuan WU, Ko-Wen LU
  • Publication number: 20240151932
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion, a fixed portion, and a driving assembly. The movable portion is used to connect the optical element. The movable portion may move relative to the fixed portion. The driving assembly is used to drive the movable portion to move relative to the fixed portion.
    Type: Application
    Filed: March 28, 2023
    Publication date: May 9, 2024
    Inventors: Hsiao-Hsin HU, Chih-Wen CHIANG, Chia-Che WU, Yu-Chiao LO, Yi-Ho CHEN, Chao-Chang HU, Sin-Jhong SONG
  • Publication number: 20240151935
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion, a fixed portion, and a driving assembly. The movable portion is used to connect the optical element. The movable portion may move relative to the fixed portion. The driving assembly is used to drive the movable portion to move relative to the fixed portion.
    Type: Application
    Filed: March 8, 2023
    Publication date: May 9, 2024
    Inventors: Hsiao-Hsin HU, Chih-Wen CHIANG, Chia-Che WU, Yu-Chiao LO, Yi-Ho CHEN, Chao-Chang HU, Sin-Jhong SONG
  • Publication number: 20240152029
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion, a fixed portion, and a driving assembly. The movable portion is used to connect the optical element. The movable portion may move relative to the fixed portion. The driving assembly is used to drive the movable portion to move relative to the fixed portion.
    Type: Application
    Filed: November 2, 2023
    Publication date: May 9, 2024
    Inventors: Hsiao-Hsin HU, Chih-Wen CHIANG, Chia-Che WU, Yu-Chiao LO, Yi-Ho CHEN, Chao-Chang HU, Sin-Jhong SONG
  • Publication number: 20240155234
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion, a fixed portion, and a driving assembly. The movable portion is used to connect the optical element. The movable portion may move relative to the fixed portion. The driving assembly is used to drive the movable portion to move relative to the fixed portion.
    Type: Application
    Filed: March 27, 2023
    Publication date: May 9, 2024
    Inventors: Hsiao-Hsin HU, Chih-Wen CHIANG, Chia-Che WU, Yu-Chiao LO, Yi-Ho CHEN, Chao-Chang HU, Sin-Jhong SONG
  • Publication number: 20240151936
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion, a fixed portion, and a driving assembly. The movable portion is used to connect the optical element. The movable portion may move relative to the fixed portion. The driving assembly is used to drive the movable portion to move relative to the fixed portion.
    Type: Application
    Filed: March 27, 2023
    Publication date: May 9, 2024
    Inventors: Hsiao-Hsin HU, Chih-Wen CHIANG, Chia-Che WU, Yu-Chiao LO, Yi-Ho CHEN, Chao-Chang HU, Sin-Jhong SONG
  • Publication number: 20240124163
    Abstract: A magnetic multi-pole propulsion array system is applied to at least one external cathode and includes a plurality of magnetic multi-pole thrusters connected adjacent to each other. Each magnetic multi-pole thruster includes a propellant provider, a discharge chamber, an anode and a plurality of magnetic components. The propellant provider outputs propellant. The discharge chamber is connected with the propellant provider to accommodate the propellant. The anode is disposed inside the discharge chamber to generate an electric field. The plurality of magnetic components is respectively disposed on several sides of the discharge chamber. One of the several sides of the discharge chamber of the magnetic multi-pole thruster is applied for one side of a discharge chamber of another magnetic multi-pole thruster.
    Type: Application
    Filed: December 19, 2022
    Publication date: April 18, 2024
    Applicant: National Cheng Kung University
    Inventors: Yueh-Heng Li, Yu-Ting Wu, Chao-Wei Huang, Wei-Cheng Lo, Hsun-Chen Hsieh, Ping-Han Huang, Yi-Long Huang, Sheng-Wen Liu, Wei-Cheng Lien
  • Patent number: 11944970
    Abstract: A microfluidic detection unit comprises at least one fluid injection section, a fluid storage section and a detection section. Each fluid injection section defines a fluid outlet; the fluid storage section is in gas communication with the atmosphere and defines a fluid inlet; the detection section defines a first end in communication with the fluid outlet and a second end in communication with the fluid inlet. A height difference is defined between the fluid outlet and the fluid inlet along the direction of gravity. When a first fluid is injected from the at least one fluid injection section, the first fluid is driven by gravity to pass through the detection section and accumulate to form a droplet at the fluid inlet, such that a state of fluid pressure equilibrium of the first fluid is established.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: April 2, 2024
    Assignees: INSTANT NANOBIOSENSORS, INC., INSTANT NANOBIOSENSORS CO., LTD.
    Inventors: Yu-Chung Huang, Yi-Li Sun, Ting-Chou Chang, Jhy-Wen Wu, Nan-Kuang Yao, Lai-Kwan Chau, Shau-Chun Wang, Ying Ting Chen
  • Patent number: 11942420
    Abstract: A semiconductor device includes a first gate structure extending along a first lateral direction. The semiconductor device includes a first interconnect structure, disposed above the first gate structure, that extends along a second lateral direction perpendicular to the first lateral direction. The first interconnect structure includes a first portion and a second portion electrically isolated from each other by a first dielectric structure. The semiconductor device includes a second interconnect structure, disposed between the first gate structure and the first interconnect structure, that electrically couples the first gate structure to the first portion of the first interconnect structure. The second interconnect structure includes a recessed portion that is substantially aligned with the first gate structure and the dielectric structure along a vertical direction.
    Type: Grant
    Filed: June 8, 2022
    Date of Patent: March 26, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Guo-Huei Wu, Hui-Zhong Zhuang, Chih-Liang Chen, Cheng-Chi Chuang, Shang-Wen Chang, Yi-Hsun Chiu
  • Publication number: 20240085678
    Abstract: Various embodiments of the present disclosure are directed towards a camera module comprising flat lenses. Flat lenses have reduced thicknesses compared to other types of lenses, whereby the camera module may have a small size and camera bumps may be omitted or reduced in size on cell phones and the like incorporating the camera module. The flat lenses are configured to focus visible light into a beam of white light, split the beam into sub-beams of red, green, and blue light, and guide the sub-beams respectively to separate image sensors for red, green, and blue light. The image sensors generate images for corresponding colors and the images are combined into a full-color image. Optically splitting the beam into the sub-beams and using separate image sensors for the sub-beams allows color filters to be omitted and smaller pixel sensors. This, in turn, allows higher quality imaging.
    Type: Application
    Filed: May 8, 2023
    Publication date: March 14, 2024
    Inventors: Jung-Huei Peng, Chun-Wen Cheng, Yi-Chien Wu, Tsun-Hsu Chen
  • Publication number: 20240071909
    Abstract: A semiconductor package is provided. The semiconductor package includes an encapsulating layer, a semiconductor die formed in the encapsulating layer, and an interposer structure covering the encapsulating layer. The interposer structure includes an insulating base having a first surface facing the encapsulating layer, and a second surface opposite the first surface. The interposer structure also includes insulating features formed on the first surface of the insulating base and extending into the encapsulating layer. The insulating features is arranged in a matrix and faces a top surface of the semiconductor die. The interposer structure further includes first conductive features formed on the first surface of the insulating base and extending into the encapsulating layer. The first conductive features surround the matrix of the insulating features.
    Type: Application
    Filed: November 6, 2023
    Publication date: February 29, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Wen WU, Techi WONG, Po-Hao TSAI, Po-Yao CHUANG, Shih-Ting HUNG, Shin-Puu JENG
  • Patent number: 11901277
    Abstract: A semiconductor package and a method of manufacturing the same are provided. The semiconductor package includes a semiconductor die, an encapsulant and a redistribution structure. The encapsulant laterally encapsulates the semiconductor die. The redistribution structure is disposed on the encapsulant and electrically connected with the semiconductor die, wherein the redistribution structure comprises a first conductive via, a first conductive wiring layer and a second conductive via stacked along a stacking direction, the first conductive via has a first terminal surface contacting the first conductive wiring layer, the second conductive via has a second terminal surface contacting the first conductive wiring layer, an area of a first cross section of the first conductive via is greater than an area of the first terminal surface of the first conductive via, and an area of a second cross section of the second conductive via is greater than an area of the second terminal surface of the second conductive via.
    Type: Grant
    Filed: July 3, 2022
    Date of Patent: February 13, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Ting Hung, Meng-Liang Lin, Shin-Puu Jeng, Yi-Wen Wu, Po-Yao Chuang
  • Patent number: 11901279
    Abstract: A semiconductor package and a method of manufacturing the same are provided. The semiconductor package includes a semiconductor die, an encapsulant and a redistribution structure. The encapsulant laterally encapsulates the semiconductor die. The redistribution structure is disposed on the encapsulant and electrically connected with the semiconductor die, wherein the redistribution structure comprises a first conductive via, a first conductive wiring layer and a second conductive via stacked along a stacking direction, the first conductive via has a first terminal surface contacting the first conductive wiring layer, the second conductive via has a second terminal surface contacting the first conductive wiring layer, an area of a first cross section of the first conductive via is greater than an area of the first terminal surface of the first conductive via, and an area of a second cross section of the second conductive via is greater than an area of the second terminal surface of the second conductive via.
    Type: Grant
    Filed: March 14, 2023
    Date of Patent: February 13, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Ting Hung, Meng-Liang Lin, Shin-Puu Jeng, Yi-Wen Wu, Po-Yao Chuang
  • Patent number: 11855014
    Abstract: A semiconductor device and method of manufacturing is provided, whereby a support structure is utilized to provide additional support for a conductive element in order to eliminate or reduce the formation of a defective surface such that the conductive element may be formed to have a thinner structure without suffering deleterious structures.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Ming-Che Ho, Hung-Jui Kuo, Yi-Wen Wu, Tzung-Hui Lee
  • Patent number: 11855028
    Abstract: A semiconductor device includes a substrate; an interconnect structure over the substrate; a first passivation layer over the interconnect structure; a first conductive pad, a second conductive pad, and a conductive line disposed over the first passivation layer and electrically coupled to conductive features of the interconnect structure; a conformal second passivation layer over and extending along upper surfaces and sidewalls of the first conductive pad, the second conductive pad, and the conductive line; a first conductive bump and a second conductive bump over the first conductive pad and the second conductive pad, respectively, where the first conductive bump and the second conductive bump extend through the conformal second passivation layer and are electrically coupled to the first conductive pad and the second conductive pad, respectively; and a dummy bump over the conductive line, where the dummy bump is separated from the conductive line by the conformal second passivation layer.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING
    Inventors: Ting-Li Yang, Po-Hao Tsai, Yi-Wen Wu, Sheng-Pin Yang, Hao-Chun Liu
  • Patent number: 11848265
    Abstract: A semiconductor package is provided. The semiconductor package includes an encapsulating layer, a semiconductor die formed in the encapsulating layer, and an interposer structure covering the encapsulating layer. The interposer structure includes an insulating base having a first surface facing the encapsulating layer, and a second surface opposite the first surface. The interposer structure also includes insulting features formed on the first surface of the insulating base and extending into the encapsulating layer. The insulting features are arranged in a matrix and face a top surface of the semiconductor die. The interposer structure further includes first conductive features formed on the first surface of the insulating base and extending into the encapsulating layer. The first conductive features surround the matrix of the plurality of insulting features.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: December 19, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi-Wen Wu, Techi Wong, Po-Hao Tsai, Po-Yao Chuang, Shih-Ting Hung, Shin-Puu Jeng
  • Publication number: 20230387028
    Abstract: A semiconductor package is fabricated by attaching a first component to a second component. The first component is assembled by forming a first redistribution structure over a substrate. A through via is then formed over the first redistribution structure, and a die is attached to the first redistribution structure active-side down. The second component includes a second redistribution structure, which is then attached to the through via. A molding compound is deposited between the first redistribution structure and the second redistribution structure and further around the sides of the second component.
    Type: Application
    Filed: August 10, 2023
    Publication date: November 30, 2023
    Inventors: Po-Hao Tsai, Po-Yao Chuang, Meng-Liang Lin, Yi-Wen Wu, Shin-Puu Jeng, Techi Wong
  • Publication number: 20230378089
    Abstract: A package structure includes a redistribution structure, a first semiconductor die, a first passive component, a second semiconductor die, a first insulating encapsulant, a second insulating encapsulant, a second passive component and a global shielding structure. The redistribution structure includes dielectric layers and conductive layers alternately stacked. The first semiconductor die, the first passive component and the second semiconductor die are disposed on a first surface of the redistribution structure. The first insulating encapsulant is encapsulating the first semiconductor die and the first passive component. The second insulating encapsulant is encapsulating the second semiconductor die, wherein the second insulating encapsulant is separated from the first insulating encapsulant. The second passive component is disposed on a second surface of the redistribution structure.
    Type: Application
    Filed: July 27, 2023
    Publication date: November 23, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Wen Wu, Shin-Puu Jeng, Shih-Ting Hung, Po-Yao chuang