Patents by Inventor Yibing Huang

Yibing Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11952575
    Abstract: A transaminase mutant and use hereof, the amino acid sequence of the transaminase mutant is an amino acid sequence in which the amino acid sequence as represented by SEQ ID NO: 1 is mutated, the mutated amino acid position being one or more selected from among F89, K193, P243, V234, I262, Q280, V379, R416, A417 and C418. The enzymatic activity and/or stability of the transaminase mutant is improved.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: April 9, 2024
    Assignee: ASYMCHEM LIFE SCIENCE (TIANJIN) CO., LTD
    Inventors: Hao Hong, Gage James, Jiangping Lu, Xingfu Xu, Wenyan Yu, Xin Huang, Yulei Ma, Yibing Cheng
  • Patent number: 11955694
    Abstract: An antenna component is provided. An orthographic projection of auxiliary antennas on a clearance area is entirely located in, partly located in, or close to a radiation-sensitive area where a specific absorption ratio (SAR) value of a frequency band needs to be reduced, so that a signal emitted from the radiation-sensitive area where the SAR value of the frequency band needs to be reduced on a primary antenna may be absorbed by the auxiliary antennas, and the auxiliary antennas generate secondary radiation.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: April 9, 2024
    Assignee: HuiZhou TCL Mobile Communication Co., Ltd.
    Inventors: Yi Huang, Lei Chen, Wei Chen, Yibing Chen
  • Patent number: 9273095
    Abstract: Disclosed are an antibiotic peptide and the like, having an amino acid sequence of Ac-Phe-Lys-Lys-Leu-Lys-Lys-Leu-Phe-Ser-Lys-Leu-Trp-Asn-Trp-Lys-NH2 (SEQ ID No:2). Also disclosed are a method of preparing the antibiotic peptide and the like, and the application thereof. The antibiotic peptide and the like synthesized by the solid phase synthetic technology according to the present invention can be used as a formulation against microbial infection and as alternate or adjuvant medicaments of antibiotics in the prior art.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: March 1, 2016
    Assignee: Jiangsu Protelight Pharmaceutical & Biotechnology Co., Ltd.
    Inventors: Yuxin Chen, Mingxia Chen, Yibing Huang, Yang Li, Yong Wang, Lili Qu, Wenren Wang
  • Publication number: 20140329739
    Abstract: Disclosed are an antibiotic peptide and the like, having an amino acid sequence of Ac-Phe-Lys-Lys-Leu-Lys-Lys-Leu-Phe-Ser-Lys-Leu-Trp-Asn-Trp-Lys-NH2 (SEQ ID No:1). Also disclosed are a method of preparing the antibiotic peptide and the like, and the application thereof. The antibiotic peptide and the like synthesized by the solid phase synthetic technology according to the present invention can be used as a formulation against microbial infection and as alternate or adjuvant medicaments of antibiotics in the prior art.
    Type: Application
    Filed: January 17, 2012
    Publication date: November 6, 2014
    Applicant: JIANGSU PROTELIGHT PHARMACEUTICAL & BIOTECHNOLOGY CO., LTD.
    Inventors: Yuxin Chen, Mingxia Chen, Yibing Huang, Yang Li, Yong Wang, Lili Qu, Wenren Wang
  • Patent number: 8354136
    Abstract: A method for producing a thick film includes disposing a precursor solution onto a substrate to form a precursor film. The precursor solution contains precursor components to a rare-earth/alkaline-earth-metal/transition-metal oxide including a salt of a rare earth element, a salt of an alkaline earth metal, and a salt of a transition metal in one or more solvents, wherein at least one of the salts is a fluoride-containing salt, and wherein the ratio of the transition metal to the alkaline earth metal is greater than 1.5. The precursor solution is treated to form a rare earth-alkaline earth-metal transition metal oxide superconductor film having a thickness greater than 0.8 ?m. precursor solution.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: January 15, 2013
    Assignee: American Superconductor Corporation
    Inventors: Xiaoping Li, Thomas Kodenkandath, Edward J. Siegal, Wei Zhang, Martin W. Rupich, Yibing Huang
  • Patent number: 7902120
    Abstract: Superconductor wires or layers having improved properties and methods for making the same are described. The superconducting layer includes a rare earth element-alkaline earth element-transition metal oxide having an average stacking fault density that is greater than about 0.01 nm?1, wherein two or more rare earth cations form the rare earth element. To form the superconductor layer of the present invention, a layer having a rare earth element-alkaline earth element-transition metal oxide substantially in a first crystal structure can be provided to a substrate where two or more rare earth cations form the rare earth element. The layer can then be heated at a temperature that is greater than 550° C. under oxidizing conditions to form a high-temperature superconducting layer substantially in a second crystal structure.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: March 8, 2011
    Assignee: American Superconductor Corporation
    Inventors: Martin W. Rupich, Wei Zhang, Yibing Huang, Xiaoping Li
  • Patent number: 7893006
    Abstract: Under one aspect, a method of making a superconductor wire includes providing an oxide superconductor layer overlaying a substrate; forming a substantially continuous barrier layer over the oxide superconductor layer, the barrier layer including metal; depositing a layer of metal particles over the barrier layer, said depositing including applying a liquid including metal particles over the barrier layer; and sintering the layer of metal particles to form a substantially continuous metal layer over the barrier layer. In one or more embodiments, the oxide superconductor layer is oxygen-deficient, and the method may include oxidizing the oxygen-deficient oxide superconductor layer. At least a portion of the sintering and the oxidizing may occur simultaneously, for example by performing them at an oxygen partial pressure and a temperature sufficient to both sinter the metal particles and to oxidize the oxygen-deficient oxide superconductor layer.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: February 22, 2011
    Assignee: American Superconductor Corporation
    Inventors: Yibing Huang, Thomas Kodenkandath, Joseph Lynch, Martin W. Rupich, Wei Zhang
  • Patent number: 7781376
    Abstract: A superconducting wire includes first and second superconducting layers disposed on one or more substrates in stacked relationship, the first superconducting layer comprising a high temperature superconducting oxide of a first composition and the second superconducting layer comprising a high temperature superconducting layer of a second composition, wherein the first and second compositions are different. The first superconductor layer optionally includes a high temperature superconductor composition selected to provide enhanced critical current (Ic(c)) in the presence of magnetic fields perpendicular to surface of the superconducting layer (H//c). The second superconductor layer optionally includes a high temperature superconductor composition selected to provide enhanced critical current (Ic) in the presence of magnetic fields parallel to surface of the superconducting layer (H//ab).
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: August 24, 2010
    Assignee: American Superconductor Corporation
    Inventors: Thomas Kodenkandath, Wei Zhang, Yibing Huang, Xiaoping Li, Edward J. Siegal, Martin W. Rupich
  • Publication number: 20100112192
    Abstract: A method for producing a thick film includes disposing a precursor solution onto a substrate to form a precursor film. The precursor solution contains precursor components to a rare-earth/alkaline-earth-metal/transition-metal oxide including a salt of a rare earth element, a salt of an alkaline earth metal, and a salt of a transition metal in one or more solvents, wherein at least one of the salts is a fluoride-containing salt, and wherein the ratio of the transition metal to the alkaline earth metal is greater than 1.5. The precursor solution is treated to form a rare earth-alkaline earth-metal transition metal oxide superconductor film having a thickness greater than 0.8 ?m. precursor solution.
    Type: Application
    Filed: November 24, 2009
    Publication date: May 6, 2010
    Applicant: American Superconductor Corp.
    Inventors: Xiaoping Li, Thomas Kodenkandath, Edward J. Siegal, Wei Zhang, Martin W. Rupich, Yibing Huang
  • Patent number: 7622424
    Abstract: A method for producing a thick film includes disposing a precursor solution onto a substrate to form a precursor film. The precursor solution contains precursor components to a rare-earth/alkaline-earth-metal/transition-metal oxide including a salt of a rare earth element, a salt of an alkaline earth metal, and a salt of a transition metal in one or more solvents, wherein at least one of the salts is a fluoride-containing salt, and wherein the ratio of the transition metal to the alkaline earth metal is greater than 1.5. The precursor solution is treated to form a rare earth-alkaline earth-metal transition metal oxide superconductor film having a thickness greater than 0.8 ?m. precursor solution.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: November 24, 2009
    Assignee: American Superconductor Corporation
    Inventors: Xiaoping Li, Thomas Kodenkandath, Edward J. Siegal, Wei Zhang, Martin W. Rupich, Yibing Huang
  • Publication number: 20090233800
    Abstract: Under one aspect, a method of making a superconductor wire includes providing an oxide superconductor layer overlaying a substrate; forming a substantially continuous barrier layer over the oxide superconductor layer, the barrier layer including metal; depositing a layer of metal particles over the barrier layer, said depositing including applying a liquid including metal particles over the barrier layer; and sintering the layer of metal particles to form a substantially continuous metal layer over the barrier layer. In one or more embodiments, the oxide superconductor layer is oxygen-deficient, and the method may include oxidizing the oxygen-deficient oxide superconductor layer. At least a portion of the sintering and the oxidizing may occur simultaneously, for example by performing them at an oxygen partial pressure and a temperature sufficient to both sinter the metal particles and to oxidize the oxygen-deficient oxide superconductor layer.
    Type: Application
    Filed: March 23, 2007
    Publication date: September 17, 2009
    Applicant: American Superconductor Corporation
    Inventors: Yibing Huang, Thomas Kodenkandath, Joseph Lynch, Martin W. Rupich, Wei Zhang
  • Publication number: 20080153709
    Abstract: Superconductor wires or layers having improved properties and methods for making the same are described. The superconducting layer includes a rare earth element—alkaline earth element—transition metal oxide having an average stacking fault density that is greater than about 0.01 nm?1, wherein two or more rare earth cations form the rare earth element. To form the superconductor layer of the present invention, a layer having a rare earth element—alkaline earth element—transition metal oxide substantially in a first crystal structure can be provided to a substrate where two or more rare earth cations form the rare earth element. The layer can then be heated at a temperature that is greater than 550° C. under oxidizing conditions to form a high-temperature superconducting layer substantially in a second crystal structure.
    Type: Application
    Filed: July 23, 2007
    Publication date: June 26, 2008
    Inventors: Martin W. Rupich, Wei Zhang, Yibing Huang, Xiaoping Li
  • Publication number: 20070111893
    Abstract: A superconducting wire includes first and second superconducting layers disposed on one or more substrates in stacked relationship, the first superconducting layer comprising a high temperature superconducting oxide of a first composition and the second superconducting layer comprising a high temperature superconducting layer of a second composition, wherein the first and second compositions are different. The first superconductor layer optionally includes a high temperature superconductor composition selected to provide enhanced critical current (Ic(c)) in the presence of magnetic fields perpendicular to surface of the superconducting layer (H//c). The second superconductor layer optionally includes a high temperature superconductor composition selected to provide enhanced critical current (Ic) in the presence of magnetic fields parallel to surface of the superconducting layer (H//ab).
    Type: Application
    Filed: July 28, 2006
    Publication date: May 17, 2007
    Applicant: American Superconductor Corporation
    Inventors: Thomas Kodenkandath, Wei Zhang, Yibing Huang, Xiaoping Li, Edward Siegal, Martin Rupich
  • Publication number: 20060094603
    Abstract: A method for producing a thick film includes disposing a precursor solution onto a substrate to form a precursor film. The precursor solution contains precursor components to a rare-earth/alkaline-earth-metal/transition-metal oxide including a salt of a rare earth element, a salt of an alkaline earth metal, and a salt of a transition metal in one or more solvents, wherein at least one of the salts is a fluoride-containing salt, and wherein the ratio of the transition metal to the alkaline earth metal is greater than 1.5. The precursor solution is treated to form a rare earth-alkaline earth-metal transition metal oxide superconductor film having a thickness greater than 0.8 ?m. precursor solution.
    Type: Application
    Filed: September 30, 2005
    Publication date: May 4, 2006
    Inventors: Xiaoping Li, Thomas Kodenkandath, Edward Siegal, Wei Zhang, Martin Rupich, Yibing Huang
  • Patent number: 6960554
    Abstract: A method of making an oxide superconductor article includes converting an oxide superconducting precursor into an oxide superconductor by thermo-mechanical processing using intermediate rolling deformation and heat treatment (including liquid-phase sintering and low temperature baking) and applying an additional heat treatment after the material is fully processed (including optional liquid-phase sintering and low temperature baking) to decompose any secondary phase remaining at the grain boundaries and to promote diffusion of the secondary phase into the oxide grain, where they form 2223 phase. The material has a better superconducting grain connectivity and improved superconducting transport property.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: November 1, 2005
    Assignee: American Superconductor Corporation
    Inventors: Yibing Huang, Gilbert N. Riley, Jr., Noe DeMedeiros
  • Publication number: 20050163644
    Abstract: A method of making a high density Mg—B superconducting article includes providing a packed powder sheath, said powder comprising a source of magnesium and boron, subjecting the packed powder sheath to a symmetric deformation, said deformation selected to elongate the packed powder sheath to form a wire while retaining the free flow of particles within the powder core, subjecting the wire to high reduction rolling, said high reduction rolling selected to reduce the wire thickness by 40 to 95% and heating the rolled article to improve the superconducting properties of the article. A superconducting article comprised of one or more elongated metal matrix regions containing one or more embedded elongated superconducting Mg—B regions running the full length of the article is disclosed, wherein the superconducting Mg—B regions have a density greater than 95% of the theoretical density, and a transition temperature in zero field of 30 K.
    Type: Application
    Filed: January 7, 2005
    Publication date: July 28, 2005
    Inventors: Cornelis Thieme, Alexander Otto, Gilbert Riley, Qi Li, Yibing Huang
  • Publication number: 20030062659
    Abstract: A method of making an oxide superconductor article includes converting an oxide superconducting precursor into an oxide superconductor by thermo-mechanical processing using intermediate rolling deformation and heat treatment (including liquid-phase sintering and low temperature baking) and applying an additional heat treatment after the material is fully processed (including optional liquid-phase sintering and low temperature baking) to decompose any secondary phase remaining at the grain boundaries and to promote diffusion of the secondary phase into the oxide grain, where they form 2223 phase. The material has a better superconducting grain connectivity and improved superconducting transport property.
    Type: Application
    Filed: April 26, 2002
    Publication date: April 3, 2003
    Applicant: American Superconductor Corporation
    Inventors: Yibing Huang, Gilbert N. Riley, Noe DeMedeiros
  • Publication number: 20030036482
    Abstract: A method of making a high density Mg—B superconducting article includes providing a packed powder sheath, said powder comprising a source of magnesium and boron, subjecting the packed powder sheath to a symmetric deformation, said deformation selected to elongate the packed powder sheath to form a wire while retaining the free flow of particles within the powder core, subjecting the wire to high reduction rolling, said high reduction rolling selected to reduce the wire thickness by 40 to 95% and heating the rolled article to improve the superconducting properties of the article. A superconducting article comprised of one or more elongated metal matrix regions containing one or more embedded elongated superconducting Mg—B regions running the full length of the article is disclosed, wherein the superconducting Mg—B regions have a density greater than 95 % of the theoretical density, and a transition temperature in zero field of 30 K.
    Type: Application
    Filed: July 3, 2002
    Publication date: February 20, 2003
    Applicant: American Superconductor Corporation
    Inventors: Cornelis L. Thieme, Alexander Otto, Gilbert N. Riley, Qi Li, Yibing Huang