Patents by Inventor Yikui (Jen) Dong

Yikui (Jen) Dong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170099163
    Abstract: An on-chip AC coupled receiver with baseline wander compensation. The receiver may be used for either single ended or differential signals. The receiver includes an input terminal to receive an input signal. AC coupling circuitry is between the input terminal and a node and couples the input signal into a coupled signal at the node. A control loop senses low frequency signal content at the node and uses a linear buffer in adjusting the coupled signal at the node based on the low frequency signal content. The operation of the control loop compensates for potential baseline wander in the coupled signal. An input stage to recovers data from the coupled signal at the node.
    Type: Application
    Filed: October 11, 2016
    Publication date: April 6, 2017
    Inventor: Yikui Jen Dong
  • Publication number: 20170033918
    Abstract: A receiver serial data streams generates a local timing reference clock from an approximate frequency reference clock by phase-aligning the local clock to transitions in the data stream. This process is commonly known as clock and data recovery (CDR). Certain transitions of the data signals are selected for use in phase-aligning the local clock, and certain transitions are ignored. Phase-error signals from multiple receivers receiving the multiple serial data streams are combined and used to make common phase adjustments to the frequency reference clock. These common adjustments track jitter that is common to the received data streams. Local adjustments that better align each respective local clock to the transitions of its respective serial data stream are made using a local phase-error signal. These local adjustments track jitter that is more unique to each of the respective serial data streams.
    Type: Application
    Filed: July 18, 2016
    Publication date: February 2, 2017
    Inventors: Masum Hossain, Nhat Nguyen, Yikui Jen Dong, Arash Zargaran-Yazd
  • Patent number: 9491008
    Abstract: An on-chip AC coupled receiver with baseline wander compensation. The receiver may be used for either single ended or differential signals. The receiver includes an input terminal to receive an input signal. AC coupling circuitry is between the input terminal and a node and couples the input signal into a coupled signal at the node. A control loop senses low frequency signal content at the node and uses a linear buffer in adjusting the coupled signal at the node based on the low frequency signal content. The operation of the control loop compensates for potential baseline wander in the coupled signal. An input stage to recovers data from the coupled signal at the node.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: November 8, 2016
    Assignee: Rambus Inc.
    Inventor: Yikui Jen Dong
  • Publication number: 20160182260
    Abstract: An on-chip AC coupled receiver with offset calibration. The receiver includes AC coupling circuitry to couple a differential input signal into a coupled differential signal having a first signal and a second signal. The receiver includes a first comparator to generate a first error signal indicative of whether a first reference signal is greater or smaller than a signal derived from the coupled differential signal. The receiver includes a second comparator to generate a second error signal indicative of whether a second reference signal is greater or smaller than the signal derived from the coupled differential signal. The receiver further includes feedback circuitry to adjust a voltage offset between the first signal and the second signal of the coupled differential signal based on the first error signal and the second error signal.
    Type: Application
    Filed: November 16, 2015
    Publication date: June 23, 2016
    Inventor: Yikui Jen Dong
  • Publication number: 20160013955
    Abstract: An on-chip AC coupled receiver with baseline wander compensation. The receiver may be used for either single ended or differential signals. The receiver includes an input terminal to receive an input signal. AC coupling circuitry is between the input terminal and a node and couples the input signal into a coupled signal at the node. A control loop senses low frequency signal content at the node and uses a linear buffer in adjusting the coupled signal at the node based on the low frequency signal content. The operation of the control loop compensates for potential baseline wander in the coupled signal. An input stage to recovers data from the coupled signal at the node.
    Type: Application
    Filed: July 1, 2015
    Publication date: January 14, 2016
    Inventor: Yikui Jen Dong
  • Patent number: 9014252
    Abstract: A channel equalization scheme is provided. A linear equalizer using a continuous-time linear equalization and a decision feedback equalizer using a discrete-time decision feedback equalization are integrated together from a hybrid receiver equalizer. The continuous-time linear equalization scheme and the discrete-time decision feedback equalization scheme are blended using a joint adaptation algorithm to form an equalization scheme for inter-symbol interference cancellation in the hybrid receiver equalizer. The hybrid receiver equalizer controls crosstalk while maintaining signal bandwidth and linearity of a signal by the high-order high frequency roll-off of the linear equalizer used. Using this configuration, the hybrid receiver equalizer eliminates the need for adaptive bandwidth controller used in conventional low-pass receiver equalization schemes. The hybrid receiver equalizer can be used in receivers for dual-speed simultaneous transmission on the same physical link.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: April 21, 2015
    Assignee: LSI Corporation
    Inventors: Yikui (Jen) Dong, Cathy Ye Liu, Freeman Yingquan Zhong
  • Patent number: 8520348
    Abstract: A differential line driver with N-paralleled slices for driving an impedance-matched transmission line. Each driver slice is a modified H-bridge driver using low-voltage, high-speed transistors. By using a voltage-dropping first resistor in each slice, a high-voltage power supply that would normally damage the transistors can be used to power the driver and produce a differential output signal with peak-to-peak amplitudes that otherwise might not be possible. Each transistor in each driver slice has a resistor disposed between the transistor and the respective output node of the driver to enhance ESD protection of the transistors and, in combination with the first resistor, to impedance match the driver to the transmission line.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: August 27, 2013
    Assignee: LSI Corporation
    Inventor: Yikui Jen Dong
  • Patent number: 8508308
    Abstract: Described embodiments provide a method of calibrating, by a calibration engine, a phase-locked loop (PLL) having one or more adjustable oscillators. The method includes entering a calibration mode of the PLL. The PLL is set to an initial state, thereby selecting one of the adjustable oscillators for calibration, an initial threshold window, and an initial tuning band of the selected adjustable oscillator. If the control signal of the selected adjustable oscillator is not within the initial threshold window, the calibration engine iteratively adjusts at least one of: (i) the selected tuning band of the selected adjustable oscillator, (ii) the selected adjustable oscillator, and (iii) the selected threshold window until the control signal of the selected adjustable oscillator is within the adjusted threshold window. If the control signal is within the threshold window, the one or more calibration settings of the PLL are stored and used to set the PLL operation.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: August 13, 2013
    Assignee: LSI Corporation
    Inventors: Yikui Jen Dong, Freeman Y. Zhong, Tai Jing, Chaitanya Palusa
  • Publication number: 20130163126
    Abstract: A differential line driver with N-paralleled slices for driving an impedance-matched transmission line. Each driver slice is a modified H-bridge driver using low-voltage, high-speed transistors. By using a voltage-dropping first resistor in each slice, a high-voltage power supply that would normally damage the transistors can be used to power the driver and produce a differential output signal with peak-to-peak amplitudes that otherwise might not be possible. Each transistor in each driver slice has a resistor disposed between the transistor and the respective output node of the driver to enhance ESD protection of the transistors and, in combination with the first resistor, to impedance match the driver to the transmission line.
    Type: Application
    Filed: December 22, 2011
    Publication date: June 27, 2013
    Inventor: Yikui Jen Dong
  • Patent number: 8432229
    Abstract: In described embodiments, a wide toning-range (WTR) inductive-capacitive (LC) phase locked loop (PLL) provides for a large range of differing oscillation frequencies with a set of individual LC voltage controlled oscillator (VCO) paths. The output of each individual wide range LCVCO path is provided to a multiplexor (MUX), whose output is selected based on a control signal from, for example, a device controller. Each of the set of individual wide range LCVCO paths includes a switch that couples the LCVCO to a loop filter of a voltage tuning module, wherein each switch also receives the control signal to disable or enable the LCVCO path when providing the output signal from the MUX. Each switch is configured so as to minimize leakage current drawn by the LCVCO when disabled, and to reduce or eliminate effects of input capacitance of each dormant LCVCO to the loop dynamics of the PLL.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: April 30, 2013
    Assignee: LSI Corporation
    Inventors: Yikui Jen Dong, Freeman Y. Zhong
  • Publication number: 20130057325
    Abstract: Described embodiments provide a method of calibrating, by a calibration engine, a phase-locked loop (PLL) having one or more adjustable oscillators. The method includes entering a calibration mode of the PLL. The PLL is set to an initial state, thereby selecting one of the adjustable oscillators for calibration, an initial threshold window, and an initial tuning band of the selected adjustable oscillator. If the control signal of the selected adjustable oscillator is not within the initial threshold window, the calibration engine iteratively adjusts at least one of: (i) the selected tuning band of the selected adjustable oscillator, (ii) the selected adjustable oscillator, and (iii) the selected threshold window until the control signal of the selected adjustable oscillator is within the adjusted threshold window. If the control signal is within the threshold window, the one or more calibration settings of the PLL are stored and used to set the PLL operation.
    Type: Application
    Filed: September 1, 2011
    Publication date: March 7, 2013
    Inventors: Yikui Jen Dong, Freeman Y. Zhong, Tai Jing, Chaitanya Palusa
  • Patent number: 8384226
    Abstract: A device fabricated on a chip is disclosed. The device generally includes (A) a first pattern and a second pattern both created in an intermediate conductive layer of the chip, (B) at least one via created in an insulating layer above the intermediate conductive layer and (C) a first bump created in a top conductive layer above the insulating layer. The first pattern generally establishes a first of a plurality of plates of a first capacitor. The via may be aligned with the second pattern. The first bump may (i) be located directly above the first plate, (ii) establish a second of the plates of the first capacitor, (iii) be suitable for flip-chip bonding, (iv) connect to the second pattern through the via such that both of the plates of the first capacitor are accessible in the intermediate conductive layer. The first pattern and the second pattern may be shaped as interlocking combs.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: February 26, 2013
    Assignee: LSI Corporation
    Inventors: Yikui (Jen) Dong, Steven L. Howard, Freeman Y. Zhong, David S. Lowrie
  • Publication number: 20120262238
    Abstract: In described embodiments, a wide toning-range (WTR) inductive-capacitive (LC) phase locked loop (PLL) provides for a large range of differing oscillation frequencies with a set of individual LC voltage controlled oscillator (VCO) paths. The output of each individual wide range LCVCO path is provided to a multiplexor (MUX), whose output is selected based on a control signal from, for example, a device controller. Each of the set of individual wide range LCVCO paths includes a switch that couples the LCVCO to a loop filter of a voltage tuning module, wherein each switch also receives the control signal to disable or enable the LCVCO path when providing the output signal from the MUX. Each switch is configured so as to minimize leakage current drawn by the LCVCO when disabled, and to reduce or eliminate effects of input capacitance of each dormant LCVCO to the loop dynamics of the PLL.
    Type: Application
    Filed: July 11, 2011
    Publication date: October 18, 2012
    Inventors: Yikui Jen Dong, Freeman Y. Zhong
  • Patent number: 7961817
    Abstract: In a receiver, an AC-coupling solution uses a fully integrated circuit for simultaneously providing both baseline wander compensation and common-mode voltage generation. Usefully, an integrated capacitor is placed between the receiver input pin and the input buffer, and a high resistive impedance element is connected to the internal high-speed data node after the capacitor. An on-chip voltage generation and correction circuit is connected to the other side of the impedance element to generate a common-mode voltage, and to provide dynamic, fine adjustment for the received data voltage level. The voltage correction circuit is controlled by the feedback of data detected by the clock and data recovery unit (CDRU) of the receiver. The feedback data passes through a weighting element, wherein the amount of feedback gain is adjustable to provide a summing weight and thereby achieve a desired BLW compensation.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: June 14, 2011
    Assignee: LSI Corporation
    Inventors: Yikui (Jen) Dong, Cathy Ye Liu, Freeman Yingquan Zhong, Shao Ming Hsu
  • Publication number: 20110006395
    Abstract: A device fabricated on a chip is disclosed. The device generally includes (A) a first pattern and a second pattern both created in an intermediate conductive layer of the chip, (B) at least one via created in an insulating layer above the intermediate conductive layer and (C) a first bump created in a top conductive layer above the insulating layer. The first pattern generally establishes a first of a plurality of plates of a first capacitor. The via may be aligned with the second pattern. The first bump may (i) be located directly above the first plate, (ii) establish a second of the plates of the first capacitor, (iii) be suitable for flip-chip bonding, (iv) connect to the second pattern through the via such that both of the plates of the first capacitor are accessible in the intermediate conductive layer. The first pattern and the second pattern may be shaped as interlocking combs.
    Type: Application
    Filed: September 20, 2010
    Publication date: January 13, 2011
    Inventors: Yikui (Jen) Dong, Steven L. Howard, Freeman Y. Zhong, David S. Lowrie
  • Patent number: 7825522
    Abstract: A device fabricated on a chip is disclosed. The device generally includes (A) a first pattern and a second pattern both created in an intermediate conductive layer of the chip, (B) at least one via created in an insulating layer above the intermediate conductive layer and (C) a first bump created in a top conductive layer above the insulating layer. The first pattern generally establishes a first of a plurality of plates of a first capacitor. The via may be aligned with the second pattern. The first bump may (i) be located directly above the first plate, (ii) establish a second of the plates of the first capacitor, (iii) be suitable for flip-chip bonding and (iv) connect to the second pattern through the via such that both of the plates of the first capacitor are accessible in the intermediate conductive layer.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: November 2, 2010
    Assignee: LSI Corporation
    Inventors: Yikui (Jen) Dong, Steven L. Howard, Freeman Y. Zhong, David S. Lowrie
  • Publication number: 20080069191
    Abstract: A system and a method for channel equalization are provided. A linear equalizer using a continuous-time linear equalization and a decision feedback equalizer using a discrete-time decision feedback equalization are integrated together from a hybrid receiver equalizer. The continuous-time linear equalization scheme and the discrete-time decision feedback equalization scheme are blended using a joint adaptation algorithm to form an equalization scheme for inter-symbol interference cancellation in the hybrid receiver equalizer. The hybrid receiver equalizer controls crosstalk while maintaining signal bandwidth and linearity of a signal by the high-order high frequency roll-off of the linear equalizer used. Using this configuration, the hybrid receiver equalizer eliminates the need for adaptive bandwidth controller used in conventional low-pass receiver equalization schemes. The hybrid receiver equalizer can be used in receivers for dual-speed simultaneous transmission on the same physical link.
    Type: Application
    Filed: December 6, 2006
    Publication date: March 20, 2008
    Inventors: Yikui (Jen) Dong, Cathy Ye Liu, Freeman Yingquan Zhong
  • Publication number: 20080063091
    Abstract: In a receiver, an AC-coupling solution uses a fully integrated circuit for simultaneously providing both baseline wander compensation and common-mode voltage generation. Usefully, an integrated capacitor is placed between the receiver input pin and the input buffer, and a high resistive impedance element is connected to the internal high-speed data node after the capacitor. An on-chip voltage generation and correction circuit is connected to the other side of the impedance element to generate a common-mode voltage, and to provide dynamic, fine adjustment for the received data voltage level. The voltage correction circuit is controlled by the feedback of data detected by the clock and data recovery unit (CDRU) of the receiver. The feedback data passes through a weighting element, wherein the amount of feedback gain is adjustable to provide a summing weight and thereby achieve a desired BLW compensation.
    Type: Application
    Filed: December 6, 2006
    Publication date: March 13, 2008
    Inventors: Yikui (Jen) Dong, Cathy Ye Liu, Freeman Yingquan Zhong, Shao Ming Hsu
  • Publication number: 20080018419
    Abstract: A device fabricated on a chip is disclosed. The device generally includes (A) a first pattern and a second pattern both created in an intermediate conductive layer of the chip, (B) at least one via created in an insulating layer above the intermediate conductive layer and (C) a first bump created in a top conductive layer above the insulating layer. The first pattern generally establishes a first of a plurality of plates of a first capacitor. The via may be aligned with the second pattern. The first bump may (i) be located directly above the first plate, (ii) establish a second of the plates of the first capacitor, (iii) be suitable for flip-chip bonding and (iv) connect to the second pattern through the via such that both of the plates of the first capacitor are accessible in the intermediate conductive layer.
    Type: Application
    Filed: April 27, 2007
    Publication date: January 24, 2008
    Inventors: Yikui Jen Dong, Steven L. Howard, Freeman Y. Zhong, David S. Lowrie