Patents by Inventor Ying Mei

Ying Mei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240008916
    Abstract: A medical catheter and a medical device, including: a catheter assembly defining a needle channel comprising a distal section with a predefined position; a needle assembly (200) partially disposed in the needle channel and comprising a metal needle (210), the needle assembly (200) movable in an axial direction of the needle channel so that the metal needle (210) passes by or reaches the predefined position; a handle assembly (300) comprising a grip (310) and an advancement member, the advancement member connected to the grip (310) and configured to be moveable relative to the grip (310), the advancement member configured to drive the needle assembly (200) to move along the needle channel; and a first monitoring device configured to sense the arrival of the metal needle (210) at the predefined position and responsively generate a first target signal.
    Type: Application
    Filed: September 28, 2021
    Publication date: January 11, 2024
    Inventors: Ying MEI, Bo LIANG, Yanjun SONG, Yiyong SUN, Jing ZHU
  • Publication number: 20220162559
    Abstract: This invention relates to three-dimensional myocardial infarct organoids and methods of making and using the same for screening compounds that improve cardiac function and compounds that diminish cardiac function.
    Type: Application
    Filed: July 9, 2019
    Publication date: May 26, 2022
    Inventors: Ying Mei, Dylan Jack Richards
  • Publication number: 20210405064
    Abstract: The present invention provides an in vitro method for identifying a compound that promotes endothelial cell adhesion, endothelial cell spreading, endothelial cell migration and/or endothelial cell proliferation for the manufacture of a diagnostic or therapeutic agent. The present invention further provides the identified compounds and pharmaceutical compositions, and assays and kits for identifying a compound or using a compound that promotes endothelial cell adhesion, endothelial cell spreading, endothelial cell migration and/or endothelial cell proliferation and is useful for bioprinting.
    Type: Application
    Filed: September 16, 2021
    Publication date: December 30, 2021
    Inventors: Ying Mei, Jia Jia, Chung-Jen James Chou
  • Patent number: 11150251
    Abstract: The present invention provides an in vitro method for identifying a compound that promotes endothelial cell adhesion, endothelial cell spreading, endothelial cell migration and/or endothelial cell proliferation for the manufacture of a diagnostic or therapeutic agent. The present invention further provides the identified compounds and pharmaceutical compositions, and assays and kits for identifying a compound or using a compound that promotes endothelial cell adhesion, endothelial cell spreading, endothelial cell migration and/or endothelial cell proliferation and is useful for bioprinting.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: October 19, 2021
    Assignees: Clemson University Research Foundation, MUSC Foundation for Research Development
    Inventors: Ying Mei, Jia Jia, Chung-Jen James Chou
  • Patent number: 10988735
    Abstract: Described herein are tissues containing semiconductor nanomaterials. In some embodiments, the tissues include vascular cells, cardiomyocytes, and/or cardiac fibroblasts. The tissue may be scaffold-free. In some embodiments, the tissue includes an electrically conductive network. The tissue may exhibit synchronized electrical signal propagation within the tissue. In some embodiments, the tissue exhibits increased functional assembly of cardiac cells and/or increased cardiac specific functions compared to a cardiac tissue prepared using a conventional tissue culture method. Methods of preparing and using such tissues are also described herein.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: April 27, 2021
    Assignees: Clemson University Research Foundation, MUSC Foundation for Research Development, The University of Chicago
    Inventors: Ying Mei, Tan Yu, Dylan Richards, Donald R. Menick, Bozhi Tian
  • Patent number: 10302718
    Abstract: A method is used for operating a switching amplifier, the switching amplifier includes a plurality of cascade elements. The method includes: coupling the cascade elements in series between two terminals of a load; providing two leg circuits each comprised of switches in each of the cascade elements; and controlling all of the switches comprised in the switching amplifier using space vector modulation (SVM), such that a change of a common mode (CM) voltage generated by the switching amplifier is in a predetermined range.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: May 28, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Ruxi Wang, Juan Sabate, Song Chi, Ying Mei
  • Patent number: 10135401
    Abstract: A switching amplifier includes a plurality of cascade elements, each bridge circuit includes an inductive load coupled between a first leg terminal of one of the at least two leg circuits and a second leg terminal of another one of the at least two leg circuits. A first leg voltage of the first leg terminal have a phase shift relative to a second leg voltage of the second leg terminal, the phase shift is used for causing the inductive load to store electric energy and generating a minimum circulating current?I min or I min sufficient to effect conducting of a corresponding diode; each of the switches is configured to be turned on if the corresponding diode conducts current to effect zero voltage switching of the corresponding switch. The minimum circulating current?I min or I min is equal to a constant value.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: November 20, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Ying Mei, Pengcheng Zhu, Juan Antonio Sabate, Song Chi, Ruxi Wang, Jianguo Xiao
  • Patent number: 10011817
    Abstract: The present invention provides systems for cell separation based on cell rolling on surfaces along edges of regions coated with cell adhesion molecules. A variety of designs of coated regions and edges are disclosed.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: July 3, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Rohit Nandkumar Karnik, Seungpyo Hong, Ying Mei, Daniel Griffith Anderson, Jeffrey Michael Karp, Robert S. Langer, Suman Bose
  • Publication number: 20180120332
    Abstract: The present invention provides an in vitro method for identifying a compound that promotes endothelial cell adhesion, endothelial cell spreading, endothelial cell migration and/or endothelial cell proliferation for the manufacture of a diagnostic or therapeutic agent. The present invention further provides the identified compounds and pharmaceutical compositions, and assays and kits for identifying a compound or using a compound that promotes endothelial cell adhesion, endothelial cell spreading, endothelial cell migration and/or endothelial cell proliferation and is useful for bioprinting.
    Type: Application
    Filed: October 6, 2017
    Publication date: May 3, 2018
    Inventors: Ying Mei, Jia Jia, Chung-Jen James Chou
  • Publication number: 20170369847
    Abstract: Provided herein are tissues containing semiconductor nanomaterials and methods of preparing and using the same.
    Type: Application
    Filed: January 15, 2016
    Publication date: December 28, 2017
    Inventors: Ying Mei, Tan Yu, Dylan Richards, Donald R. Menick, Bozhi Tian
  • Publication number: 20170322269
    Abstract: A method is used for operating a switching amplifier, the switching amplifier includes a plurality of cascade elements. The method includes: coupling the cascade elements in series between two terminals of a load; providing two leg circuits each comprised of switches in each of the cascade elements; and controlling all of the switches comprised in the switching amplifier using space vector modulation (SVM), such that a change of a common mode (CM) voltage generated by the switching amplifier is in a predetermined range.
    Type: Application
    Filed: October 27, 2015
    Publication date: November 9, 2017
    Inventors: Ruxi Wang, Juan Sabate, Song Chi, Ying Mei
  • Patent number: 9764515
    Abstract: Disclosed are systems, compositions, and methods for three-dimensional (3D) printing. An example system includes a plurality dispensers configured to deposit materials from their tips and a printing surface for receiving the materials. The system includes a position sensing detector configured to detect positions of the tips of the dispensers and the location and dimensions of the printing surface. The system includes a robotic positioning device configured to drive the dispensers. The system also includes a control unit configured to receive and map in a 3D space the positions of the tips of the dispensers and the position and dimensions of the printing surface. The control unit is further configured to control the robotic positioning device to drive the dispensers relative to the printing surface in the 3D space, and to independently deposit materials on the printing surface, or on material deposited on the printing surface.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: September 19, 2017
    Assignees: MUSC Foundation for Research Development, Izumi International, Inc., Clemson University
    Inventors: Michael J. Yost, Thomas Trusk, Ying Mei, Michael Chappell, Walter Boylan
  • Publication number: 20170264248
    Abstract: A switching amplifier includes a plurality of cascade elements, each bridge circuit includes an inductive load coupled between a first leg terminal of one of the at least two leg circuits and a second leg terminal of another one of the at least two leg circuits. A first leg voltage of the first leg terminal have a phase shift relative to a second leg voltage of the second leg terminal, the phase shift is used for causing the inductive load to store electric energy and generating a minimum circulating current—I min or I min sufficient to effect conducting of a corresponding diode; each of the switches is configured to be turned on if the corresponding diode conducts current to effect zero voltage switching of the corresponding switch. The minimum circulating current—I min or I min is equal to a constant value.
    Type: Application
    Filed: September 10, 2015
    Publication date: September 14, 2017
    Inventors: Ying MEI, Pengcheng ZHU, Juan Antonio SABATE, Song CHI, Ruxi WANG, Jianguo XIAO
  • Publication number: 20170204367
    Abstract: The present invention provides systems for cell separation based on cell rolling on surfaces along edges of regions coated with cell adhesion molecules. A variety of designs of coated regions and edges are disclosed.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 20, 2017
    Inventors: Rohit Nandkumar Karnik, Seungpyo Hong, Ying Mei, Daniel Griffith Anderson, Jeffrey Michael Karp, Robert S. Langer, Suman Bose
  • Patent number: 9555413
    Abstract: The present invention provides systems for cell separation based on cell rolling on surfaces along edges of regions coated with cell adhesion molecules. A variety of designs of coated regions and edges are disclosed.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: January 31, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Rohit Nandkumar Karnik, Seungpyo Hong, Ying Mei, Daniel Griffith Anderson, Jeffrey Michael Karp, Robert S. Langer, Suman Bose
  • Patent number: 9455580
    Abstract: A battery system has a battery module including a number M of series-connected batteries. The battery system is further provided with a number N (1<N?M) of charge equalizers, each of which once connected to a battery, causes the battery to be charged and/or discharged to achieve charge equalization. A control device is configured to determine for each battery if it requires charge equalization based on a state of charge (SOC) of the battery, compare a number L of the batteries that require charge equalization and the number M, and based on the comparison result, cause the battery system to be shut down, or the one or more batteries that require charge equalization to be connected to corresponding charge equalizers. A selective switch module is used for connecting the one or more batteries that require charge equalization to corresponding charge equalizers, respectively.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: September 27, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Saijun Mao, Huiqing Wu, Herman Lucas Norbert Wiegman, Qunjian Huang, Ying Mei
  • Publication number: 20150375453
    Abstract: Disclosed are systems, compositions, and methods for three-dimensional (3D) printing. An example system includes a plurality dispensers configured to deposit materials from their tips and a printing surface for receiving the materials. The system includes a position sensing detector configured to detect positions of the tips of the dispensers and the location and dimensions of the printing surface. The system includes a robotic positioning device configured to drive the dispensers. The system also includes a control unit configured to receive and map in a 3D space the positions of the tips of the dispensers and the position and dimensions of the printing surface. The control unit is further configured to control the robotic positioning device to drive the dispensers relative to the printing surface in the 3D space, and to independently deposit materials on the printing surface, or on material deposited on the printing surface.
    Type: Application
    Filed: May 1, 2015
    Publication date: December 31, 2015
    Inventors: Michael J. Yost, Thomas Trusk, Ying Mei, Michael Chappell, Walter Boylan
  • Patent number: 9132523
    Abstract: A method of performing chemical mechanical polish (CMP) processes on a wafer includes providing the wafer; determining a thickness profile of a feature on a surface of the wafer; and, after the step of determining the thickness profile, performing a high-rate CMP process on the feature using a polish recipe to substantially achieve a within-wafer thickness uniformity of the feature. The polish recipe is determined based on the thickness profile.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: September 15, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shen-Nan Lee, Ying-Mei Lin, Yu-Jen Cheng, Keung Hui, Huan-Just Lin
  • Publication number: 20150246354
    Abstract: The present invention provides systems for cell separation based on cell rolling on surfaces along edges of regions coated with cell adhesion molecules. A variety of designs of coated regions and edges are disclosed.
    Type: Application
    Filed: March 24, 2015
    Publication date: September 3, 2015
    Inventors: Rohit Nandkumar Karnik, Seungpyo Hong, Ying Mei, Daniel Griffith Anderson, Jeffrey Michael Karp, Robert S. Langer, Suman Bose
  • Patent number: 8986988
    Abstract: The present invention provides systems for cell separation based on cell rolling on surfaces along edges of regions coated with cell adhesion molecules. A variety of designs of coated regions and edges are disclosed.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: March 24, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Rohit Nandkumar Karnik, Seungpyo Hong, Ying Mei, Daniel Griffith Anderson, Jeffrey Michael Karp, Robert S. Langer, Suman Bose