Patents by Inventor Yinmin Wang

Yinmin Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10298152
    Abstract: A system is disclosed for harvesting at least one of mechanical or thermal energy. The system may have a flexible substrate, a plurality of electrically conductive nanowires secured to the substrate, and a plurality of electrically conductive metal layers. The metal layers may be disposed on the substrate and spaced apart from one another along a length of the substrate. The metal layers may be in electrically conductive contact with various ones of the nanowires. At least two of the metal layers may be attachable to an external device. At least one of movement or flexing of the substrate produces an output voltage across the metal layers.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: May 21, 2019
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Harry B. Radousky, Fang Qian, Yinmin Wang
  • Patent number: 10109845
    Abstract: Provided here is a method for making a graphene-supported metal oxide monolith, comprising: providing a graphene aerogel monolith; immersing said graphene aerogel monolith in a solution comprising at least one metal salt to form a mixture; curing said mixture to obtain a gel; optionally, heating said gel to obtain a graphene-supported metal oxide monolith.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: October 23, 2018
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Theodore F. Baumann, Juergen Biener, Monika M. Biener, Yinmin Wang, Jianchao Ye, Elijah Tylski
  • Publication number: 20170054137
    Abstract: Provided here is a method for making a graphene-supported metal oxide monolith, comprising: providing a graphene aerogel monolith; immersing said graphene aerogel monolith in a solution comprising at least one metal salt to form a mixture; curing said mixture to obtain a gel; optionally, heating said gel to obtain a graphene-supported metal oxide monolith.
    Type: Application
    Filed: November 1, 2016
    Publication date: February 23, 2017
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Theodore F. Baumann, Juergen Biener, Monika M. Biener, Yinmin Wang, Jianchao Ye, Elijah Tylski
  • Patent number: 9543569
    Abstract: A composition comprising at least one graphene-supported metal oxide monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds, wherein the graphene sheets are coated by at least one metal oxide such as iron oxide or titanium oxide. Also provided is an electrode comprising the aforementioned graphene-supported metal oxide monolith, wherein the electrode can be substantially free of any carbon-black and substantially free of any binder.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 10, 2017
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Theodore F. Baumann, Juergen Biener, Monika A. Biener, Yinmin Wang, Jianchao Ye, Elijah Tylski
  • Patent number: 9537157
    Abstract: A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: January 3, 2017
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Yinmin Wang, Xianying Wang, Alex V. Hamza
  • Publication number: 20160308468
    Abstract: A system is disclosed for harvesting at least one of mechanical or thermal energy. The system may have a flexible substrate, a plurality of electrically conductive nanowires secured to the substrate, and a plurality of electrically conductive metal layers. The metal layers may be disposed on the substrate and spaced apart from one another along a length of the substrate. The metal layers may be in electrically conductive contact with various ones of the nanowires. At least two of the metal layers may be attachable to an external device. At least one of movement or flexing of the substrate produces an output voltage across the metal layers.
    Type: Application
    Filed: April 20, 2016
    Publication date: October 20, 2016
    Inventors: Harry B. RADOUSKY, Fang QIAN, Yinmin WANG
  • Publication number: 20150288002
    Abstract: A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter.
    Type: Application
    Filed: April 24, 2015
    Publication date: October 8, 2015
    Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Yinmin Wang, Xianying Wang, Alex V. Hamza
  • Patent number: 9052283
    Abstract: A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: June 9, 2015
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Yinmin Wang, Xianying Wang, Alex V. Hamza
  • Publication number: 20140287336
    Abstract: A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter.
    Type: Application
    Filed: April 11, 2014
    Publication date: September 25, 2014
    Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Yinmin Wang, Xianying Wang, Alex V. Hamza
  • Patent number: 8778563
    Abstract: A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: July 15, 2014
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Yinmin Wang, Xianying Wang, Alex V. Hamza
  • Patent number: 8344597
    Abstract: A nanoconverter is capable of directly generating electricity through a nanostructure embedded in a polymer layer experiencing differential thermal expansion in a stress transfer zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or substantially vertically aligned on a substrate. The resulting nanoforest is then embedded with the polymer layer, which transfers stress to the nanostructures in the stress transfer zone, thereby creating a nanostructure voltage output due to the piezoelectric effect acting on the nanostructure. Electrodes attached at both ends of the nanostructures generate output power at densities of ˜20 nW/cm2 with heating temperatures of ˜65° C. Nanoconverters arrayed in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: January 1, 2013
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Donald J. Sirbuly, Xianying Wang, Yinmin Wang
  • Publication number: 20120237853
    Abstract: A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter.
    Type: Application
    Filed: April 20, 2012
    Publication date: September 20, 2012
    Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Yinmin Wang, Xianying Wang, Alex V. Hamza
  • Publication number: 20110163636
    Abstract: A nanoconverter is capable of directly generating electricity through a nanostructure embedded in a polymer layer experiencing differential thermal expansion in a stress transfer zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or substantially vertically aligned on a substrate. The resulting nanoforest is then embedded with the polymer layer, which transfers stress to the nanostructures in the stress transfer zone, thereby creating a nanostructure voltage output due to the piezoelectric effect acting on the nanostructure. Electrodes attached at both ends of the nanostructures generate output power at densities of ˜20 nW/cm2 with heating temperatures of ˜65° C. Nanoconverters arrayed in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries.
    Type: Application
    Filed: December 16, 2010
    Publication date: July 7, 2011
    Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Donald J. Sirbuly, Xianying Wang, Yinmin Wang
  • Publication number: 20040060620
    Abstract: In accordance with the invention, nanostructured metallic materials having high tensile strength and increased ductility are prepared by providing a metallic material, deforming the metallic material to form a plurality of dislocation cell structures, annealing the material at a temperature from about 0.3 to about 0.7 of its absolute melting temperature, and cooling the annealed metallic material. The result is a nanostructured metal or alloy having increased tensile strength as compared with the corresponding coarse-grained material and substantially greater ductility as compared with nanostructured material made by conventional processes. Using this process applicants have made nanostructured alloys with tensile strengths in excess of 1.5 Gpa and ductility greater than 1 per cent strain-to-failure. They have also made nanostructured metals with tensile strength in excess of 400 MPa and ductility in excess of 50% strain-to-failure.
    Type: Application
    Filed: April 29, 2003
    Publication date: April 1, 2004
    Applicant: JOHNS HOPKINS UNIVERSITY
    Inventors: Ev An Ma, Yinmin Wang, Mingwei Chen