Patents by Inventor Yoel Gilon

Yoel Gilon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8931475
    Abstract: Systems and methods for directly monitoring energy flux of a solar receiver in a solar energy-based power generation system include measuring infrared radiation emanating from the solar receiver. Such measurement can be achieved using one or more infrared thermography detectors, such as an IR camera. Resulting thermal data obtained by the imaging can be used to determine energy flux distribution on the receiver. A user or a system controller can use the determined flux distribution to adjust heliostat aiming to achieve a desired operation condition. For example, heliostats can be adjusted to achieve a uniform energy flux distribution across the external surface of the receiver and/or to maximize heat transfer to a fluid flowing through the receiver within system operating limits.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: January 13, 2015
    Assignee: Brightsource Industries (Israel) Ltd.
    Inventors: Yoel Gilon, Ophir Chernin, Gideon Goldwine, Gil Kroyzer, Rotem Hayut, Dan Franck, Israel Kroizer, Ziv Aumann
  • Patent number: 8544272
    Abstract: A method for generating steam for a turbine electric power plant uses solar radiation. Solar radiation is directed onto a solar receiver. The solar receiver includes a first section, which receives feedwater input and is arranged to heat the feedwater input to generate steam using the directed solar radiation. Feedwater flows through a feedwater vessel to serve as feedwater input to an inlet of the first section of the receiver. Water is separated from the steam in steam separation vessel, which is in fluid communication with an outlet of the first section of the receiver. The feedwater input may be selectively preheated by a source of preheat other than solar energy in response to system operating conditions, predicted insolation schedule, or an electrical energy tariff schedule.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: October 1, 2013
    Assignee: Brightsource Industries (Israel) Ltd.
    Inventors: Israel Kroizer, Gabriel Kaufmann, Leon Afremov, Yoel Gilon
  • Publication number: 20130087139
    Abstract: At least some of the heliostats can be arranged and operated in such a manner that the maintenance vehicle can pass through the solar field along conditional pathways. The arrangement and control of the heliostats to allow access to heliostats by a maintenance vehicle can enable different heliostat patterns as compared with conventional arrangements. In particular, heliostats in one section of the solar field, which may be less geometrically efficient, can be arranged at a higher density as compared to heliostat in another section of the solar field. In addition, the locations of heliostats in various sections of the field can be optimized based on ground coverage as viewed from a vantage point in the solar tower and/or revenue generation without constraining the locations to particular line or arc patterns.
    Type: Application
    Filed: June 16, 2011
    Publication date: April 11, 2013
    Applicant: BRIGHTSOURCE INDUSTRIES (ISRAEL) LTD.
    Inventors: Gil Kroyzer, Yoel Gilon, Eyal Rozenman
  • Publication number: 20130048752
    Abstract: A maintenance vehicle for heliostats as well as heliostats within a solar field of a solar tower system can be controlled to reduce the likelihood of damage to an indigenous animal or its habitat. At least some of the heliostats can be arranged and operated in such a manner that the maintenance vehicle can pass through the solar field along conditional pathways. The arrangement and control of the heliostats to allow access to heliostats by a maintenance vehicle can enable different heliostat patterns as compared with conventional arrangements. In particular, heliostats in one section of the solar field can be arranged in a more ordered and high density pattern while heliostats in another section of the solar field can be arranged in a more disordered pattern. The density and arrangement of heliostats in various sections of the field can be optimized to improve and/or maximize solar energy production and/or revenue generation.
    Type: Application
    Filed: February 25, 2011
    Publication date: February 28, 2013
    Inventors: Yoel Gilon, Gil Kroyzer, Maro Van Dyke
  • Patent number: 8365718
    Abstract: A solar energy collection system includes a primary solar receiver and a secondary solar receiver. The secondary solar receiver generates steam using energy from solar radiation incident thereon. The primary solar receiver receives the generated steam from the secondary solar receiver and superheats the steam using energy from solar radiation incident thereon. A plurality of heliostat-mounted mirrors reflects incident solar radiation onto one of the primary and secondary solar receivers. A controller aims a portion of the heliostat-mounted mirrors at the primary solar receiver such that a predetermined thermal profile is provided on a surface of the primary solar receiver.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: February 5, 2013
    Assignee: Brightsource Industries (Israel) Ltd.
    Inventors: Yoel Gilon, Israel Kroizer, Gil Kroyzer
  • Patent number: 8360051
    Abstract: A solar energy collection system has a solar receiver with an external surface configured for high absorption of light incident thereon. The solar receiver also has a plurality of light-reflecting elements arranged on the external surface. The light-reflecting elements produce at least partially diffuse reflection of light energy incident thereon. Heliostats concentrate solar radiation onto the external surface of the solar receiver. An imaging device provides a digital image of at least a portion of the external surface of the solar receiver. A controller can control the heliostats in response to apparent brightness of the light-reflecting elements as represented in the digital image.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: January 29, 2013
    Assignee: Brightsource Industries (Israel) Ltd.
    Inventors: Yoel Gilon, Gil Kroyzer, Rotem Hayut
  • Patent number: 8327840
    Abstract: A solar energy collection system includes a primary solar receiver and a secondary solar receiver. The secondary solar receiver generates steam using energy from solar radiation incident thereon. The primary solar receiver receives the generated steam from the secondary solar receiver and superheats the steam using energy from solar radiation incident thereon. A plurality of heliostat-mounted mirrors reflects incident solar radiation onto one of the primary and secondary solar receivers. A controller aims a portion of the heliostat-mounted mirrors at the primary solar receiver such that a predetermined thermal profile is provided on a surface of the primary solar receiver.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: December 11, 2012
    Assignee: Brightsource Industries (Israel) Ltd.
    Inventors: Yoel Gilon, Israel Kroizer
  • Publication number: 20120024282
    Abstract: A solar energy collection system includes a primary solar receiver and a secondary solar receiver. The secondary solar receiver generates steam using energy from solar radiation incident thereon. The primary solar receiver receives the generated steam from the secondary solar receiver and superheats the steam using energy from solar radiation incident thereon. A plurality of heliostat-mounted mirrors reflects incident solar radiation onto one of the primary and secondary solar receivers. A controller aims a portion of the heliostat-mounted mirrors at the primary solar receiver such that a predetermined thermal profile is provided on a surface of the primary solar receiver.
    Type: Application
    Filed: July 28, 2011
    Publication date: February 2, 2012
    Applicant: BRIGHTSOURCE INDUSTRIES (ISRAEL) LTD.
    Inventors: YOEL GILON, ISRAEL KROIZER, GIL KROYZER
  • Patent number: 8063349
    Abstract: A solar heliostat and system are described with various characteristics particularly suitable for concentrating systems with a relatively large number of small heliostats. Other features contribute to high performance, low cost, high durability, and high temperature operation, such as desired for high efficiency thermal power generation.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: November 22, 2011
    Assignee: Brightsource Industries (Israel) Ltd.
    Inventors: Shmuel Huss, Hagai Huss, Israel Kroizer, Yoel Gilon, Danny Franck, Susan Walzer
  • Patent number: 8033110
    Abstract: A multi-mode solar power generation system can include a first energy conversion system that generates electricity from a working fluid heated by a portion of solar radiation focused by a plurality of heliostats. The multi-mode solar power generation system can also include a second energy conversion system that generates electricity from an unused portion of the focused solar radiation using a different energy conversion mode than that of the first energy conversion system. The second energy conversion system can include one or more photovoltaic converters, which directly convert solar radiation to electricity. The unused radiation from the first energy conversion system can include radiation spillage or dumped radiation from a thermal receiver of the first energy conversion system.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: October 11, 2011
    Assignee: Brightsource Industries (Israel) Ltd.
    Inventors: Yoel Gilon, Arnold J. Goldman, Israel Kroizer, Gideon Goldwine, Gil Kroyzer
  • Patent number: 8001960
    Abstract: A solar energy collection system includes a primary solar receiver and a secondary solar receiver. The secondary solar receiver generates steam using energy from solar radiation incident thereon. The primary solar receiver receives the generated steam from the secondary solar receiver and superheats the steam using energy from solar radiation incident thereon. A plurality of heliostat-mounted mirrors reflects incident solar radiation onto one of the primary and secondary solar receivers. A controller aims a portion of the heliostat-mounted mirrors at the primary solar receiver such that a predetermined thermal profile is provided on a surface of the primary solar receiver.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: August 23, 2011
    Assignee: BrightSource Industries (Israel) Ltd.
    Inventors: Yoel Gilon, Israel Kroizer, Gil Kroyzer
  • Publication number: 20100300510
    Abstract: A solar power system may include at least one reflector The reflector may have a surface configured to convert a first part of the sunlight incident thereon to electrical power The surface of the reflector may also be configured to reflect a second part of the sunlight incident thereon The at least one reflector may be configured to direct the second part of the sunlight incident thereon to a solar receiver A power management system may also be provided The power management system may receiver electrical power derived from the first part from the reflector.
    Type: Application
    Filed: July 23, 2008
    Publication date: December 2, 2010
    Inventors: Arnold J. Goldman, Binyamin Koretz, Yoel Gilon
  • Publication number: 20100282242
    Abstract: A solar energy collection system includes a primary solar receiver and a secondary solar receiver. The secondary solar receiver generates steam using energy from solar radiation incident thereon. The primary solar receiver receives the generated steam from the secondary solar receiver and superheats the steam using energy from solar radiation incident thereon. A plurality of heliostat-mounted mirrors reflects incident solar radiation onto one of the primary and secondary solar receivers. A controller aims a portion of the heliostat-mounted mirrors at the primary solar receiver such that a predetermined thermal profile is provided on a surface of the primary solar receiver.
    Type: Application
    Filed: July 22, 2010
    Publication date: November 11, 2010
    Applicant: BrightSource Industries (ISRAEL) Ltd.
    Inventors: Yoel GILON, Israel KROIZER
  • Publication number: 20100236239
    Abstract: A method for generating steam for a turbine electric power plant uses solar radiation. Solar radiation is directed onto a solar receiver. The solar receiver includes a first section, which receives feedwater input and is arranged to heat the feedwater input to generate steam using the directed solar radiation. Feedwater flows through a feedwater vessel to serve as feedwater input to an inlet of the first section of the receiver. Water is separated from the steam in steam separation vessel, which is in fluid communication with an outlet of the first section of the receiver. The feedwater input may be selectively preheated by a source of preheat other than solar energy in response to system operating conditions, predicted insolation schedule, or an electrical energy tariff schedule.
    Type: Application
    Filed: June 11, 2008
    Publication date: September 23, 2010
    Applicant: BrightSource Industries (ISRAEL) Ltd.
    Inventors: Israel I. Kroizer, Gabriel Kaufmann, Leon Afremov, Yoel Gilon
  • Publication number: 20100191378
    Abstract: A concentrating solar system has multiple receivers, in some embodiments mounted on multiple towers, on which solar energy is concentrating using heliostats. At least some heliostats are controlled such that they may direct energy onto different receivers to achieve any of various control goals, such as temperature or flux uniformity of the receiver. In preferred embodiments, the receivers or receiver portions are fluidly connected in stages such that there are high temperature targets, e.g., superheated receivers or portions, and low temperature targets, e.g. evaporating receivers or targets. By doing so, it is possible to selectively control heliostats to track for directing energy on the targets to, for example, achieve temperature uniformity of the high temperature target by selecting heliostats for that control goal under varying circumstances.
    Type: Application
    Filed: March 26, 2008
    Publication date: July 29, 2010
    Applicant: BRIGHTSOURCE INDUSTRIES (ISRAEL) LTD.
    Inventors: Yoel Gilon, Israel Kroizer, Gabriel Kaufmann
  • Publication number: 20100175738
    Abstract: A solar heliostat and system are described with various characteristics particularly suitable for concentrating systems with a relatively large number of small heliostats. Other features contribute to high performance, low cost, high durability, and high temperature operation, such as desired for high efficiency thermal power generation.
    Type: Application
    Filed: April 15, 2008
    Publication date: July 15, 2010
    Inventors: Shmuel Huss, Hagai Huss, Israel Kroizer, Yoel Gilon, Danny Franck, Susan Walzer
  • Patent number: 7690377
    Abstract: The invention provides receivers which can be used to heat a working fluid to high temperature. In preferred embodiments, concentrated solar radiation is received and converted to heat at varying depths in the receiver such that multiple layers of surface are used to heat the working fluid. In addition, the depth-loading configuration helps to trap received heat to reduce radiant thermal loss.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: April 6, 2010
    Assignee: BrightSource Energy, Inc.
    Inventors: Arnold Goldman, Arieh Meitav, Ilia Yakupov, Israel Kroizer, Yuri Kokotov, Yoel Gilon
  • Publication number: 20100006087
    Abstract: Systems and methods for directly monitoring energy flux of a solar receiver in a solar energy-based power generation system include measuring infrared radiation emanating from the solar receiver. Such measurement can be achieved using one or more infrared thermography detectors, such as an IR camera. Resulting thermal data obtained by the imaging can be used to determine energy flux distribution on the receiver. A user or a system controller can use the determined flux distribution to adjust heliostat aiming to achieve a desired operation condition. For example, heliostats can be adjusted to achieve a uniform energy flux distribution across the external surface of the receiver and/or to maximize heat transfer to a fluid flowing through the receiver within system operating limits.
    Type: Application
    Filed: July 9, 2009
    Publication date: January 14, 2010
    Applicant: BrightSource Industries (ISRAEL) Ltd.
    Inventors: YOEL GILON, Ophir Chernin, Gideon Goldwine, Gil Kroyzer, Rotem Hayut, Dan Franck, Israel Kroizer, Ziv Aumann
  • Publication number: 20090250052
    Abstract: A solar energy collection system has a solar receiver with an external surface configured for high absorption of light incident thereon. The solar receiver also has a plurality of light-reflecting elements arranged on the external surface. The light-reflecting elements produce at least partially diffuse reflection of light energy incident thereon. Heliostats concentrate solar radiation onto the external surface of the solar receiver. An imaging device provides a digital image of at least a portion of the external surface of the solar receiver. A controller can control the heliostats in response to apparent brightness of the light-reflecting elements as represented in the digital image.
    Type: Application
    Filed: November 12, 2008
    Publication date: October 8, 2009
    Applicant: Luz II Ltd.
    Inventors: Yoel Gilon, Gil Kroyzer, Rotem Hayut
  • Publication number: 20090229264
    Abstract: A multi-mode solar power generation system can include a first energy conversion system that generates electricity from a working fluid heated by a portion of solar radiation focused by a plurality of heliostats. The multi-mode solar power generation system can also include a second energy conversion system that generates electricity from an unused portion of the focused solar radiation using a different energy conversion mode than that of the first energy conversion system. The second energy conversion system can include one or more photovoltaic converters, which directly convert solar radiation to electricity. The unused radiation from the first energy conversion system can include radiation spillage or dumped radiation from a thermal receiver of the first energy conversion system.
    Type: Application
    Filed: March 16, 2009
    Publication date: September 17, 2009
    Inventors: Yoel GILON, Arnold J. Goldman, Israel Kroizer, Gideon Goldwine, Gil Kroyzer