Patents by Inventor Yong-Tsong Tan

Yong-Tsong Tan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8404133
    Abstract: A method for manufacturing a planar optical waveguide device of which a core includes a plurality of alternatively arranged fin portions and valley portions to form a grating structure, in which the core widths of the valley portions vary along the longitudinal direction, the method including: a high refractive index material layer forming step of forming a high refractive index material layer; a photoresist layer forming step of forming a photoresist layer on the high refractive index material layer; a first exposure step of forming shaded portions on the photoresist layer using a phase-shifting photomask; a second exposure step of forming shaded portions on the photoresist layer using a binary photomask; a development step of developing the photoresist layer; and an etching step of etching the high refractive index material layer using the photoresist pattern resulted from the development step.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: March 26, 2013
    Assignee: Fujikura Ltd.
    Inventors: Ken Sakuma, Kensuke Ogawa, Kazuhiro Goi, Yong Tsong Tan, Ning Guan, Mingbin Yu, Hwee Gee Teo, Guo-Qiang Lo
  • Patent number: 8227178
    Abstract: A method for manufacturing a planar optical waveguide device including a core of which a top face is provided with a groove section filled with a groove section filler made of a low refractive index material having a refractive index lower than that of the core, the method including; a first high refractive index material layer forming step of forming a high refractive index material layer; a low refractive index material layer forming step of forming a low refractive index material layer made of the low refractive index material on the high refractive index material layer; a groove section filler forming step of forming the groove section filler by trimming both lateral portions of the low refractive index material layer; and a second high refractive index material layer forming step of forming a high refractive index material layer so as to fill the both sides of the lateral portions of the groove section filler.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: July 24, 2012
    Assignees: Fujikura Ltd., Agency for Science, Technology and Research
    Inventors: Ken Sakuma, Kensuke Ogawa, Kazuhiro Goi, Yong Tsong Tan, Ning Guan, Mingbin Yu, Hwee Gee Teo, Guo-Qiang Lo
  • Publication number: 20110049735
    Abstract: A method for manufacturing a planar optical waveguide device of which a core includes a plurality of alternatively arranged fin portions and valley portions to form a grating structure, in which the core widths of the valley portions vary along the longitudinal direction, the method including: a high refractive index material layer forming step of forming a high refractive index material layer; a photoresist layer forming step of forming a photoresist layer on the high refractive index material layer; a first exposure step of forming shaded portions on the photoresist layer using a phase-shifting photomask; a second exposure step of forming shaded portions on the photoresist layer using a binary photomask; a development step of developing the photoresist layer; and an etching step of etching the high refractive index material layer using the photoresist pattern resulted from the development step.
    Type: Application
    Filed: August 25, 2009
    Publication date: March 3, 2011
    Applicants: Fujikura Ltd., Agency for Science, Technology and Research
    Inventors: Ken Sakuma, Kensuke Ogawa, Kazuhiro Goi, Yong Tsong Tan, Ning Guan, Mingbin Yu, Hwee Gee Teo, Guo-Qiang Lo
  • Publication number: 20110053095
    Abstract: A method for manufacturing a planar optical waveguide device including a core of which a top face is provided with a groove section filled with a groove section filler made of a low refractive index material having a refractive index lower than that of the core, the method including; a first high refractive index material layer forming step of forming a high refractive index material layer; a low refractive index material layer forming step of forming a low refractive index material layer made of the low refractive index material on the high refractive index material layer; a groove section filler forming step of forming the groove section filler by trimming both lateral portions of the low refractive index material layer; and a second high refractive index material layer forming step of forming a high refractive index material layer so as to fill the both sides of the lateral portions of the groove section filler.
    Type: Application
    Filed: August 25, 2009
    Publication date: March 3, 2011
    Applicants: Fujikura Ltd., Agency for Science, Technology and Research
    Inventors: Ken SAKUMA, Kensuke OGAWA, Kazuhiro GOI, Yong Tsong TAN, Ning GUAN, Mingbin YU, Hwee Gee TEO, Guo-Qiang LO
  • Patent number: 7065280
    Abstract: A dispersion compensation device for compensating chromatic dispersion of optical pulses launched from the exterior is disclosed. The device comprises a waveguide and a photonic crystal part, the waveguide comprising a core part for guiding the optical pulse from an input end to an output end and a clad part consisting of a first clad layer and a second clad layer, the photonic crystal part providing a chromatic dispersion variation of a proper dispersion characteristic to the optical pulses guided through the waveguide, the chromatic dispersion variation having an absolute value of the variation and a positive or negative sign, wherein the photonic crystal part is layered onto the first clad layer, the core part is layered onto the photonic crystal part, and the second clad part is formed so that a portion of which is layered onto the photonic crystal part and a remaining part of which covers the exposed surface of the core part.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: June 20, 2006
    Assignee: Bussan Nanotech Research, Inc.
    Inventors: Kensuke Ogawa, Yong-Tsong Tan
  • Publication number: 20060093299
    Abstract: A dispersion compensation device for compensating chromatic dispersion of optical pulses launched from the exterior is disclosed. The device comprises a waveguide and a photonic crystal part, the waveguide comprising a core part for guiding the optical pulse from an input end to an output end and a clad part consisting of a first clad layer and a second clad layer, the photonic crystal part providing a chromatic dispersion variation of a proper dispersion characteristic to the optical pulses guided through the waveguide, the chromatic dispersion variation having an absolute value of the variation and a positive or negative sign, wherein the photonic crystal part is layered onto the first clad layer, the core part is layered onto the photonic crystal part, and the second clad part is formed so that a portion of which is layered onto the photonic crystal part and a remaining part of which covers the exposed surface of the core part.
    Type: Application
    Filed: October 27, 2005
    Publication date: May 4, 2006
    Inventors: Kensuke Ogawa, Yong-Tsong Tan