Patents by Inventor Yongwoo Inn

Yongwoo Inn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200308380
    Abstract: Disclosed are ethylene polymer compositions containing a homogeneously-branched first ethylene polymer component and 15-35 wt. % of a homogeneously-branched second ethylene polymer component of higher density than the first ethylene polymer component. The ethylene polymer composition can be characterized by a density from 0.912 to 0.925 g/cm3, a ratio of Mw/Mn from 2 to 5, a melt index less than 2 g/10 min, and a CY-a parameter at 190° C. from 0.35 to 0.7. These polymer compositions have the excellent dart impact strength and optical properties of a metallocene-catalyzed LLDPE, but with improved machine direction tear resistance, and can be used in blown film and other end-use applications. Further, methods for improving film Elmendorf tear strength also are described.
    Type: Application
    Filed: April 2, 2020
    Publication date: October 1, 2020
    Inventors: Jeremy M. Praetorius, Chung Ching Tso, Ashish M. Sukhadia, Yongwoo Inn, Qing Yang, John T. Blagg
  • Publication number: 20200157260
    Abstract: Disclosed herein are ethylene-based polymers generally characterized by a density of at least 0.94 g/cm3, a high load melt index from 4 to 20 g/10 min, a zero-shear viscosity at 190° C. from 20,000 to 400,000 kPa-sec, and a relaxation time at 190° C. from 225 to 3000 sec. These ethylene polymers can be produced by peroxide-treating a broad molecular weight distribution Ziegler-catalyzed resin, and can be used in large diameter, thick wall pipes and other end-use applications.
    Type: Application
    Filed: January 28, 2020
    Publication date: May 21, 2020
    Inventors: Vivek Rohatgi, Ashish M. Sukhadia, Yongwoo Inn, Elizabeth M. Lanier
  • Publication number: 20200109246
    Abstract: Disclosed are ethylene polymer compositions containing a homogeneously-branched first ethylene polymer component and a homogeneously-branched second ethylene polymer component of higher density than the first ethylene polymer component. The ethylene polymer composition can be characterized by a density from 0.912 to 0.925 g/cm3, a melt index less than 3.5 g/10 min, and a CY-a parameter at 190° C. from 0.25 to 0.65. These polymer compositions have the excellent dart impact strength and optical properties of a metallocene-catalyzed LLDPE, but with improved machine direction tear resistance, and can be used in blown film and other end-use applications.
    Type: Application
    Filed: December 9, 2019
    Publication date: April 9, 2020
    Inventors: Jeremy M. Praetorius, Chung C. Tso, Qing Yang, Yongwoo Inn, John T. Blagg, Ashish M. Sukhadia
  • Patent number: 10590213
    Abstract: Disclosed herein are ethylene-based polymers generally characterized by a density of at least 0.94 g/cm3, a high load melt index from 4 to 20 g/10 min, a zero-shear viscosity at 190° C. from 20,000 to 400,000 kPa-sec, and a relaxation time at 190° C. from 225 to 3000 sec. These ethylene polymers can be produced by peroxide-treating a broad molecular weight distribution Ziegler-catalyzed resin, and can be used in large diameter, thick wall pipes and other end-use applications.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: March 17, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Vivek Rohatgi, Ashish M. Sukhadia, Yongwoo Inn, Elizabeth M. Lanier
  • Patent number: 10544273
    Abstract: Disclosed are ethylene polymer compositions containing a homogeneously-branched first ethylene polymer component and a homogeneously-branched second ethylene polymer component of higher density than the first ethylene polymer component. The ethylene polymer composition can be characterized by a density from 0.912 to 0.925 g/cm3, a melt index less than 3.5 g/10 min, and a CY-a parameter at 190° C. from 0.25 to 0.65. These polymer compositions have the excellent dart impact strength and optical properties of a metallocene-catalyzed LLDPE, but with improved machine direction tear resistance, and can be used in blown film and other end-use applications.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: January 28, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jeremy M. Praetorius, Chung C. Tso, Qing Yang, Yongwoo Inn, John T. Blagg, Ashish M. Sukhadia
  • Patent number: 10544236
    Abstract: Disclosed herein are ethylene-based polymers generally characterized by a density from 0.89 to 0.93 g/cm3, a ratio of Mw/Mn from 3 to 6.5, a Mz from 200,000 to 650,000 g/mol, a CY-a parameter at 190° C. from 0.2 to 0.4, and a reverse short chain branching distribution. The ATREF profile of these polymers can have a high temperature peak from 92 to 102° C., and a low temperature peak from 18 to 36° C. less than that of the high temperature peak. These polymers can have comparable physical properties to that of a metallocene-catalyzed LLDPE, but with improved processability, shear thinning, and melt strength, and can be used in blown film and other end-use applications.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: January 28, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Errun Ding, Chung C. Tso, Randall S. Muninger, Qing Yang, Youlu Yu, Yongwoo Inn
  • Publication number: 20190382516
    Abstract: Disclosed herein are ethylene-based polymers generally characterized by a Mw ranging from 70,000 to 200,000 g/mol, a ratio of Mz/Mw ranging from 1.8 to 20, an IB parameter ranging from 0.92 to 1.05, and an ATREF profile characterized by one large peak. These polymers have the dart impact, tear strength, and optical properties of a metallocene-catalyzed LLDPE, but with improved processability, melt strength, and bubble stability, and can be used in blown film and other end-use applications.
    Type: Application
    Filed: August 20, 2019
    Publication date: December 19, 2019
    Inventors: Mark L. Hlavinka, Chung Ching Tso, Yongwoo Inn, Deloris R. Gagan, Randy S. Muninger
  • Publication number: 20190322823
    Abstract: Disclosed are ethylene polymer compositions containing a homogeneously-branched first ethylene polymer component and a homogeneously-branched second ethylene polymer component of higher density than the first ethylene polymer component. The ethylene polymer composition can be characterized by a density from 0.912 to 0.925 g/cm3, a melt index less than 3.5 g/10 min, and a CY-a parameter at 190° C. from 0.25 to 0.65. These polymer compositions have the excellent dart impact strength and optical properties of a metallocene-catalyzed LLDPE, but with improved machine direction tear resistance, and can be used in blown film and other end-use applications.
    Type: Application
    Filed: July 2, 2019
    Publication date: October 24, 2019
    Inventors: Jeremy M. Praetorius, Chung C. Tso, Qing Yang, Yongwoo Inn, John T. Blagg, Ashish M. Sukhadia
  • Patent number: 10442881
    Abstract: Disclosed herein are ethylene-based polymers generally characterized by a Mw ranging from 70,000 to 200,000 g/mol, a ratio of Mz/Mw ranging from 1.8 to 20, an 1B parameter ranging from 0.92 to 1.05, and an ATREF profile characterized by one large peak. These polymers have the dart impact, tear strength, and optical properties of a metallocene-catalyzed LLDPE, but with improved processability, melt strength, and bubble stability, and can be used in blown film and other end-use applications.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: October 15, 2019
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Mark L. Hlavinka, Chung Ching Tso, Yongwoo Inn, Deloris R. Gagan, Randy S. Muninger
  • Patent number: 10435527
    Abstract: Disclosed are ethylene polymer compositions containing a homogeneously-branched first ethylene polymer component and a homogeneously-branched second ethylene polymer component of higher density than the first ethylene polymer component. The ethylene polymer composition can be characterized by a density from 0.912 to 0.925 g/cm3, a melt index less than 3.5 g/10 min, and a CY-a parameter at 190° C. from 0.25 to 0.65. These polymer compositions have the excellent dart impact strength and optical properties of a metallocene-catalyzed LLDPE, but with improved machine direction tear resistance, and can be used in blown film and other end-use applications.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: October 8, 2019
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jeremy M. Praetorius, Chung C. Tso, Qing Yang, Yongwoo Inn, John T. Blagg, Ashish M. Sukhadia
  • Publication number: 20190284315
    Abstract: Disclosed herein are ethylene-based polymers generally characterized by a density of at least 0.94 g/cm3, a high load melt index from 4 to 20 g/10 min, a zero-shear viscosity at 190° C. from 20,000 to 400,000 kPa-sec, and a relaxation time at 190° C. from 225 to 3000 sec. These ethylene polymers can be produced by peroxide-treating a broad molecular weight distribution Ziegler-catalyzed resin, and can be used in large diameter, thick wall pipes and other end-use applications.
    Type: Application
    Filed: March 13, 2018
    Publication date: September 19, 2019
    Inventors: Vivek Rohatgi, Ashish M. Sukhadia, Yongwoo Inn, Elizabeth M. Lanier
  • Publication number: 20190263943
    Abstract: A method of determining multimodal polyethylene quality comprising the steps of (a) providing a multimodal polyethylene resin sample; (b) determining, in any sequence, the following: that the multimodal polyethylene resin sample has a melt index within 30% of a target melt index; that the multimodal polyethylene resin sample has a density within 2.5% of a target density; that the multimodal polyethylene resin sample has a dynamic viscosity deviation (% MVD) from a target dynamic viscosity of less than about 100%; that the multimodal polyethylene resin sample has a weight average molecular weight (Mw) deviation (% MwD) from a target Mw of less than about 20%; and that the multimodal polyethylene resin sample has a gel permeation chromatography (GPC) curve profile deviation (% GPCD) from a target GPC curve profile of less than about 15%; and (c) responsive to step (b), designating the multimodal polyethylene resin sample as a high quality resin.
    Type: Application
    Filed: February 28, 2018
    Publication date: August 29, 2019
    Inventors: Youlu Yu, Paul J. DesLauriers, Yongwoo Inn
  • Publication number: 20190233551
    Abstract: Disclosed herein are ethylene-based polymers generally characterized by a density from 0.89 to 0.93 g/cm3, a ratio of Mw/Mn from 3 to 6.5, a Mz from 200,000 to 650,000 g/mol, a CY-a parameter at 190° C. from 0.2 to 0.4, and a reverse short chain branching distribution. The ATREF profile of these polymers can have a high temperature peak from 92 to 102° C., and a low temperature peak from 18 to 36° C. less than that of the high temperature peak. These polymers can have comparable physical properties to that of a metallocene-catalyzed LLDPE, but with improved processability, shear thinning, and melt strength, and can be used in blown film and other end-use applications.
    Type: Application
    Filed: April 8, 2019
    Publication date: August 1, 2019
    Inventors: Errun Ding, Chung C. Tso, Randall S. Muninger, Qing Yang, Youlu Yu, Yongwoo Inn
  • Patent number: 10358506
    Abstract: Disclosed herein are ethylene-based polymers generally characterized by a density from 0.89 to 0.93 g/cm3, a ratio of Mw/Mn from 3 to 6.5, a Mz from 200,000 to 650,000 g/mol, a CY-a parameter at 190° C. from 0.2 to 0.4, and a reverse short chain branching distribution. The ATREF profile of these polymers can have a high temperature peak from 92 to 102° C., and a low temperature peak from 18 to 36° C. less than that of the high temperature peak. These polymers can have comparable physical properties to that of a metallocene-catalyzed LLDPE, but with improved processability, shear thinning, and melt strength, and can be used in blown film and other end-use applications.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: July 23, 2019
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Errun Ding, Chung C. Tso, Randall S. Muninger, Qing Yang, Youlu Yu, Yongwoo Inn
  • Publication number: 20190100606
    Abstract: Disclosed herein are ethylene-based polymers generally characterized by a density from 0.89 to 0.93 g/cm3, a ratio of Mw/Mn from 3 to 6.5, a Mz from 200,000 to 650,000 g/mol, a CY-a parameter at 190° C. from 0.2 to 0.4, and a reverse short chain branching distribution. The ATREF profile of these polymers can have a high temperature peak from 92 to 102° C., and a low temperature peak from 18 to 36° C. less than that of the high temperature peak. These polymers can have comparable physical properties to that of a metallocene-catalyzed LLDPE, but with improved processability, shear thinning, and melt strength, and can be used in blown film and other end-use applications.
    Type: Application
    Filed: October 3, 2017
    Publication date: April 4, 2019
    Inventors: Errun Ding, Chung C. Tso, Randall S. Muninger, Qing Yang, Youlu Yu, Yongwoo Inn
  • Publication number: 20190092912
    Abstract: Disclosed are ethylene polymer compositions containing a homogeneously-branched first ethylene polymer component and a homogeneously-branched second ethylene polymer component of higher density than the first ethylene polymer component. The ethylene polymer composition can be characterized by a density from 0.912 to 0.925 g/cm3, a melt index less than 3.5 g/10 min, and a CY-a parameter at 190° C. from 0.25 to 0.65. These polymer compositions have the excellent dart impact strength and optical properties of a metallocene-catalyzed LLDPE, but with improved machine direction tear resistance, and can be used in blown film and other end-use applications.
    Type: Application
    Filed: September 26, 2017
    Publication date: March 28, 2019
    Inventors: Jeremy M. Praetorius, Chung C. Tso, Qing Yang, Yongwoo Inn, John T. Blagg, Ashish M. Sukhadia
  • Patent number: 10214603
    Abstract: A polyolefin having a density of greater than about 0.930 g/ml which when extruded at a temperature in the range of from about 590° F. to about 645° F. and then coated onto a substrate at a rate of from about 300 ft/min to about 1000 ft/min has an edge weave of from about 0 in/side to about 2.5 in/side and a neck-in of less than about 3.0 in/side.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: February 26, 2019
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Chung Tso, Carlos A. Cruz, Qing Yang, Max P. McDaniel, Jared L. Barr, Youlu Yu, Yongwoo Inn, Ashish M. Sukhadia, Brandy Rutledge-Ryal, Daniel G. Hert, Kelly Frey, Bill Bridendolph, William Fisher
  • Patent number: 10184018
    Abstract: Disclosed herein are ethylene-based polymers having a density greater than 0.945 g/cm3, a high load melt index less than 25 g/10 min, a peak molecular weight ranging from 52,000 to 132,000 g/mol, and an environmental stress crack resistance of at least 250 hours. These polymers have the processability of chromium-based resins, but with improved impact strength and stress crack resistance, and can be used in large-part blow molding applications.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: January 22, 2019
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Mark L. Hlavinka, Qing Yang, Yongwoo Inn, William M. Whitte, John R. Rathman, Steven J. Secora, Daniel G. Hert
  • Publication number: 20180298129
    Abstract: A polyolefin having a density of greater than about 0.930 g/ml which when extruded at a temperature in the range of from about 590° F. to about 645° F. and then coated onto a substrate at a rate of from about 300 ft/min to about 1000 ft/min has an edge weave of from about 0 in/side to about 2.5 in/side and a neck-in of less than about 3.0 in/side.
    Type: Application
    Filed: May 16, 2018
    Publication date: October 18, 2018
    Inventors: Chung TSO, Carlos A. CRUZ, Qing YANG, Max P. MCDANIEL, Jared L. BARR, Youlu YU, Yongwoo INN, Ashish M. SUKHADIA, Brandy RUTLEDGE-RYAL, Daniel G. HERT, Kelly FREY, Bill BRIDENDOLPH, William FISHER
  • Publication number: 20180258205
    Abstract: Disclosed herein are ethylene-based polymers generally characterized by a Mw ranging from 70,000 to 200,000 g/mol, a ratio of Mz/Mw ranging from 1.8 to 20, an 1B parameter ranging from 0.92 to 1.05, and an ATREF profile characterized by one large peak. These polymers have the dart impact, tear strength, and optical properties of a metallocene-catalyzed LLDPE, but with improved processability, melt strength, and bubble stability, and can be used in blown film and other end-use applications.
    Type: Application
    Filed: May 8, 2018
    Publication date: September 13, 2018
    Inventors: Mark L. Hlavinka, Chung Ching Tso, Yongwoo Inn, Deloris R. Gagan, Randy S. Muninger