Patents by Inventor Yonjae Kim

Yonjae Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10675040
    Abstract: Described herein are an apparatus and methods for automating subtasks in surgery and interventional medical procedures. The apparatus consists of a robotic positioning platform, an operating system with automation programs, and end-effector tools to carry out a task under supervised autonomy. The operating system executes an automation program, based on one or a fusion of two or more imaging modalities, guides real-time tracking of mobile and deformable targets in unstructured environment while the end-effector tools execute surgical interventional subtasks that require precision, accuracy, maneuverability and repetition. The apparatus and methods make these medical procedures more efficient and effective allowing a wider access and more standardized outcomes and improved safety.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: June 9, 2020
    Assignee: Children's National Medical Center
    Inventors: Peter C Kim, Axel Krieger, Yonjae Kim, Azad Shademan, Simon Leonard
  • Patent number: 10398519
    Abstract: The present disclosure describes a method and system for performing robot-assisted surgical procedures. The system includes a robotic arm system assembly, an end effector assembly, and a hybrid control mechanism for robotic surgery. The robotic arm is a lightweight, bedside robot with a large range of motion, which can be easily manipulated to position endoscope and surgical instruments. The control console is mounted at the distal end of the robotic arm to enable robotic arm to follow operators arm movement, provide physical support, filter out hand tremor, and constrain motion. A universal adapter is also described as an interface to connect traditional laparoscopic tools to the robotic arm.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: September 3, 2019
    Assignee: Children's National Medical Center
    Inventors: Peter C. W. Kim, Yonjae Kim, Peng Cheng, Axel Krieger, Justin Opfermann, Ryan Decker
  • Publication number: 20180193099
    Abstract: The present disclosure describes a method and system for performing robot-assisted surgical procedures. The system includes a robotic arm system assembly, an end effector assembly, and a hybrid control mechanism for robotic surgery. The robotic arm is a lightweight, bedside robot with a large range of motion, which can be easily manipulated to position endoscope and surgical instruments. The control console is mounted at the distal end of the robotic arm to enable robotic arm to follow operators arm movement, provide physical support, filter out hand tremor, and constrain motion. A universal adapter is also described as an interface to connect traditional laparoscopic tools to the robotic arm.
    Type: Application
    Filed: September 15, 2017
    Publication date: July 12, 2018
    Applicant: Children's National Medical Center
    Inventors: Peter C.W. KIM, Yonjae KIM, Peng CHENG, Axel KRIEGER, Justin OPFERMANN, Ryan DECKER
  • Patent number: 9788903
    Abstract: The present disclosure describes a method and system for performing robot-assisted surgical procedures. The system includes a robotic arm system assembly, an end effector assembly, and a hybrid control mechanism for robotic surgery. The robotic arm is a lightweight, bedside robot with a large range of motion, which can be easily manipulated to position endoscope and surgical instruments. The control console is mounted at the distal end of the robotic arm to enable robotic arm to follow operators arm movement, provide physical support, filter out hand tremor, and constrain motion. A universal adapter is also described as an interface to connect traditional laparoscopic tools to the robotic arm.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: October 17, 2017
    Assignee: Children's National Medical Center
    Inventors: Peter C. W. Kim, Yonjae Kim, Peng Cheng, Axel Krieger, Justin Opfermann, Ryan Decker
  • Publication number: 20160058517
    Abstract: Described herein are an apparatus and methods for automating subtasks in surgery and interventional medical procedures. The apparatus consists of a robotic positioning platform, an operating system with automation programs, and end-effector tools to carry out a task under supervised autonomy. The operating system executes an automation program, based on one or a fusion of two or more imaging modalities, guides real-time tracking of mobile and deformable targets in unstructured environment while the end-effector tools execute surgical interventional subtasks that require precision, accuracy, maneuverability and repetition. The apparatus and methods make these medical procedures more efficient and effective allowing a wider access and more standardized outcomes and improved safety.
    Type: Application
    Filed: November 12, 2015
    Publication date: March 3, 2016
    Applicant: Children's National Medical Center
    Inventors: Peter C KIM, Axel Krieger, Yonjae Kim, Azad Shademan, Simon Leonard
  • Patent number: 9220570
    Abstract: Described herein are an apparatus and methods for automating subtasks in surgery and interventional medical procedures. The apparatus consists of a robotic positioning platform, an operating system with automation programs, and end-effector tools to carry out a task under supervised autonomy. The operating system executes an automation program, based on one or a fusion of two or more imaging modalities, guides real-time tracking of mobile and deformable targets in unstructured environment while the end-effector tools execute surgical interventional subtasks that require precision, accuracy, maneuverability and repetition. The apparatus and methods make these medical procedures more efficient and effective allowing a wider access and more standardized outcomes and improved safety.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: December 29, 2015
    Assignee: Children's National Medical Center
    Inventors: Peter C. Kim, Axel Krieger, Yonjae Kim, Azad Shademan, Simon Leonard
  • Publication number: 20140222023
    Abstract: The present disclosure describes a method and system for performing robot-assisted surgical procedures. The system includes a robotic arm system assembly, an end effector assembly, and a hybrid control mechanism for robotic surgery. The robotic arm is a lightweight, bedside robot with a large range of motion, which can be easily manipulated to position endoscope and surgical instruments. The control console is mounted at the distal end of the robotic arm to enable robotic arm to follow operators arm movement, provide physical support, filter out hand tremor, and constrain motion. A universal adapter is also described as an interface to connect traditional laparoscopic tools to the robotic arm.
    Type: Application
    Filed: February 4, 2014
    Publication date: August 7, 2014
    Applicant: Children's National Medical Center
    Inventors: Peter C.W. KIM, Yonjae KIM, Peng CHENG, Axel KRIEGER, Justin OPFERMANN, Ryan DECKER
  • Publication number: 20140066966
    Abstract: A low profile gastrointestinal dilation catheter for use in infants includes a catheter tube, a dilation balloon, and at least one anchoring device. The dilation balloon is disposed over the catheter tube and is configured to transition between a compressed state and an expanded state. The at least one anchoring device is configured to prevent migration of the dilation balloon during a transition of the dilation balloon from the compressed state to the expanded state. A method to treat infantile hypertrophic pyloric stenosis (IHPS) is also provided.
    Type: Application
    Filed: August 30, 2013
    Publication date: March 6, 2014
    Applicant: Children's National Medical Center
    Inventors: Peter C.W. KIM, Timothy D. Kane, Shannon McGue, Axel Krieger, Yonjae Kim, Carolyn Cochenour
  • Publication number: 20140005684
    Abstract: Described herein are an apparatus and methods for automating subtasks in surgery and interventional medical procedures. The apparatus consists of a robotic positioning platform, an operating system with automation programs, and end-effector tools to carry out a task under supervised autonomy. The operating system executes an automation program, based on one or a fusion of two or more imaging modalities, guides real-time tracking of mobile and deformable targets in unstructured environment while the end-effector tools execute surgical interventional subtasks that require precision, accuracy, maneuverability and repetition. The apparatus and methods make these medical procedures more efficient and effective allowing a wider access and more standardized outcomes and improved safety.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 2, 2014
    Inventors: Peter C. KIM, Axel Krieger, Yonjae Kim, Azad Shademan, Simon Leonard